• 제목/요약/키워드: reinforced concrete(RC) beam

검색결과 667건 처리시간 0.023초

Effects of Replacement Ratio of Recycled Coarse Aggregate on the Shear Performance of Reinforced Concrete Beams without Shear Reinforcement

  • Yun, Hyun-Do;You, Young-Chan;Lee, Do-Heon
    • 토지주택연구
    • /
    • 제2권4호
    • /
    • pp.471-477
    • /
    • 2011
  • This paper will describe the experimental results on the shear behaviors of reinforced concrete (RC) beam with recycled coarse aggregate (RCA). The primary objective of this research is to evaluate the influences of different RCA replacement percentage (i.e, 0%, 30%, 60%, and 100%) on the shear performance of reinforced concrete beams without shear reinforcement. Eight large-scale RC beams without shear reinforcement were manufactured and tested to shear failure. All had a rectangular cross-section with 400mm width ${\times}$ 600mm depth and 6000mm length, and were tested with a shear span-to-depth of 5.1. The results showed that the deflection and shear strength were little affected by the different RCA replacement percentage. Actual shear strength of each RCA beam was compared with the shear strength predicted using the provisions of ACI 318 code and Zsutty'e equation for shear design of RC beams. ACI 318 code predicted the shear strength of RCA reinforced concrete beams well.

Seismic retrofitting and fragility for damaged RC beam-column joints using UHP-HFRC

  • Trishna, Choudhury;Prem P., Bansal
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.463-472
    • /
    • 2022
  • Reinforced concrete (RC) beam column joints (BCJ) have mostly exhibited poor seismic performance during several past earthquakes, typically due to the poor-quality concrete or lack of reinforcement detailing typical of pre-code design practice. The present study is motivated towards numerical simulation and seismic fragility assessment of one such RC-BCJ. The BCJ is loaded to failure and strengthened using Ultra High Performance-Hybrid Fiber Reinforced Concrete (UHP-HFRC) jacketing. The strengthening is performed for four different BCJ specimens, each representing an intermediate damage state before collapse. viz., slight, moderate, severe, and collapse. From the numerical simulation of all the BCJ specimens, an attempt is made to correlate different modelling and design parameters of the BC joint with respect to the damage states. In addition, seismic fragility analysis of the original as well as the retrofitted damaged BCJ specimens show the relative enhancement achieved in each case.

The design of reinforced concrete beams for shear in current practice: A new analytical model

  • Londhe, R.S.
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.225-235
    • /
    • 2009
  • The present paper reviews the shear design (of reinforced concrete beam) provisions of four different national codes and proposes a new but simplified shear strength empirical expression, incorporating variables such as compressive strength of concrete, percentage of longitudinal and vertical steel/s, depth of beam in terms of shear span-to-depth ratio, for reinforced concrete (RC) beams without shear reinforcement. The expression is based on the experimental investigation on RC beams without shear reinforcement. Further, the comparisons of shear design provisions of four National codes viz.: (i) IS 456-2000, (iii) BS 8110-1997, (iv) ACI 318-2002 (v) EuroCode-2-2002 and the proposed expression for the prediction of shear capacity of normal beam/s, have been made by solving a numerical example. The results of the numerical example worked out suggest that there is need for revision in the shear design procedure of different codes. Also, the proposed expression is less conservative among the IS, BS & Eurocode.

Coupling of nonlinear models for steel-concrete interaction in structural RC joints

  • Dominguez, Norberto;Perez-Mota, Jesus
    • Coupled systems mechanics
    • /
    • 제3권2호
    • /
    • pp.195-211
    • /
    • 2014
  • When strong seismic forces act on reinforced concrete structures, their beam-column connections are very susceptible to damage during the earthquake event. The aim of this numerical work is to evaluate the influence of the internal steel reinforcement array on the nonlinear response of a RC beam-column connection when it is subjected to strong cyclic loading -as a seismic load. For this, two specimens (extracted from an experimental test of 12 RC beam-column connections reported in literature) were modeled in the Finite Element code FEAP considering different stirrup's arrays. In order to evaluate the nonlinear response of the RC beam-column connection, the 2D model takes into account the nonlinear thermodynamic behavior of each component: for concrete, a damage model is used; for steel reinforcement, it is adopted a classical plasticity model; in the case of the steel-concrete bonding, this one is considered perfect without degradation. At the end, we show a comparison between the experimental test's responses and the numerical results, which includes the distribution of shear stresses and damage inside the concrete core of the beam-column connection; in the other hand, the effects on the connection of a low and high state of confinement are analyzed for all cases.

섬유로프 인장 배치 시 콘크리트 보의 내력에 관한 실험적 연구 (An Experimental Study on Internal Force By Using Fiber Rope Concrete Beam)

  • 최재남;진성일;손기상
    • 한국안전학회지
    • /
    • 제27권2호
    • /
    • pp.78-83
    • /
    • 2012
  • This is a study to confirm how to improve and substitute the existing re-bar with other material such as a fiber rope, especially super fiber rope having much more strong tensile strength. 6(b) different fiber rope reinforced beam with a section of $20{\times}30cm$ have been made and tasted as variables designed in the study. The larger diameter of fiber rope, the more capacity of the beam, even though fiber reinforced beam are increased with ten(10)percent, each. Lower capacity of fiber-reinforced beam than normal RC beam has been analyzed theoretically and empirically, based on a lot of experiences of the same size beam test. Fiber rope-reinforced concrete beam does not have sufficient capacity than RC beam due to insufficient bonding capacity of fiber rope in concrete. It leads to decrease beam bearing capacity and crack around lower center of the beam. Therefore, bonding reinforcement of fiber rope beam such as pinning a triangles steel pin in each knot of fiber rope contributes to improving bearing capacity of fiber rope reinforcing beam.

Increasing the flexural capacity of RC beams using partially HPFRCC layers

  • Hemmati, Ali;Kheyroddin, Ali;Sharbatdar, Mohammad K.
    • Computers and Concrete
    • /
    • 제16권4호
    • /
    • pp.545-568
    • /
    • 2015
  • High Performance Fiber Reinforced Cementitious Composites which are called HPFRCC, include cement matrices with strain hardening response under tension loading. In these composites, the cement mortar with fine aggregates, is reinforced by continuous or random distributed fibers and could be used for various applications including structural fuses and retrofitting of reinforced concrete members etc. In this paper, mechanical properties of HPFRCC materials are reviewed briefly. Moreover, a reinforced concrete beam (experimentally tested by Maalej et al.) is chosen and in different specimens, lower or upper or both parts of that beam are replaced with HPFRCC layers. After modeling of specimens in ABAQUS and calibration of those, mechanical properties of these specimens are investigated with different thicknesses, tensile strengths, tensile strains and compressive bars. Analytical results which are obtained by nonlinear finite analyses show that using HPFRCC layers with different parameters, increase loading capacity and ultimate displacement of these beams compare to RC specimens.

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

An Analytic Method for the Residual Strength Evaluation of Fire-Damaged Reinforced Concrete Beam

  • Park, Won-jun;Park, Ki-bong;Lee, Han-seung
    • Architectural research
    • /
    • 제10권2호
    • /
    • pp.37-42
    • /
    • 2008
  • This study is to get the proper evaluation of the residual property of reinforced concrete beam exposed to fire. This study focused on the strength resistance and analytical evaluation of RC members exposed high temperature. And this study is the basis analytical research to conduct the other studies. To analysis by the finite element method, the Total-RC program was used to analysis it and the Total-Temp program was also used to analysis the temperature distributions at the section. All of results were compared with the pre-existing experimental data of simple supported beam. Using it, the parameters influencing the structural capacity of the high temperature-damaged RC members and residual strength estimation are investigated. The temperature distribution and the structural capacity at the section are calculated in this step. An application of this method is compared with the heating test result and residual property test for simple supported beam which is subjected to ISO 834 test fire. The results of this study are as follows; 1) The loads-displacement relationship of RC beam, considering initial thermal stress of cross section and heat transfer analysis are estimated comparing analytical value with pre-existing experimental results. 2) by the heating time (0, 1, 2 hours), the results of analysis with parameters show that the load capacity exposing at fire is affected.

단부 RC조와 중앙부 철골조로 이루어진 혼합구조 보의 전단내력에 관한 실험적 연구 (Shear Strength of Hybrid Steel Beam with Reinforced Concrete Ends)

  • 김욱종;최종권;문정호;이리형;이동렬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.457-462
    • /
    • 1998
  • An experimental study was carried out for hybrid steel beams with reinforced concrete ends. The purpose is to examine the shear strength and to develop the design methodology of the RC-S connection region. Tested were four beams which included a reference beam and three beams with various parameters. The reference beam was used to make a comparison with remaining specimens. The test parameters were focused mostly on the concentrated shear reinforcements. The ratio of concentrated shear reinforcements and their types were investigated in this study.

  • PDF

철근 콘크리트 구조와 강판 콘크리트 구조(Steel Plate Concrete) 이질접합부를 가진 보의 휨 하중 특성에 관한 실험연구 (An Experimental Study on Flexural Properties of SC(Steel Plate Concrete) Beam Structure with Reinforced Concrete Joint)

  • 이경진;함경원;박동수;김우범
    • 한국강구조학회 논문집
    • /
    • 제22권5호
    • /
    • pp.455-463
    • /
    • 2010
  • 본 연구는 철근콘크리트 구조와 강판 콘크리트 구조가 혼합되어 이질접합부가 있는 보형 구조물의 역학적 특성을 평가하기 위하여 수행하였다. 강판콘크리트 구조는 현재 국내와 일본, 미국 등에서 연구가 진행되고 있고, 대규모 산업설비에서 철근콘크리트 구조의 대안으로 실험연구가 수행되고 있다. 본 연구에서는 대규모 철근콘크리트 구조물에 강판 콘크리트 구조를 적용할 경우를 가정하여 보 형태의 구조물에 강판 콘크리트 구조와 철근 콘크리트 구조를 적용하여 이질접합부를 만들고, 면외하중을 파괴 시까지 가력하여 이질접합부를 가진 보형실험체의 휨 내력 및 구조특성을 평가하기 위하여 실험연구를 수행하였다.