• Title/Summary/Keyword: regulatory T cells

Search Result 336, Processing Time 0.029 seconds

TGF-β1 Expression by Proliferated Keratinocytes in the Skin of E-Irradiated Mice (E-ray를 조사한 쥐의 피부에서 증식된 keratinocyte에 의한 TGF-β1 발현)

  • Yoon, A-Ran;Kim, Do-Nyun;Seo, Min-Koo;Oh, Sang-Taek;Seo, Jung-Seon;Jun, Se-Mo;Cha, Jung-Ho;Lee, Seung-Deok;Lee, Suk-Kyeong
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.133-141
    • /
    • 2012
  • In this study, we established a radiodermatitis animal model and investigated the change in immune cell proportions in the secondary lymphoid organs. The cells responsible for the increased transforming growth factor-${\beta}1$ (TGF-${\beta}1$) and interleukin-10 (IL-10) production in the lesions following irradiation were also investigated. The radiodermatitis model was constructed by locally exposing the posterior dorsal region of hairless-1 (HR-1) mice to 10 Gy electron (E)-ray/day for six consecutive days. The change in immune cell proportions was analyzed by FACS. Immunohistochemistry was carried out to detect the expression of cytokines and cell-specific markers in the skin. The proportions of antigen-presenting cells, T cells, and B cells in the lymph nodes and spleen were affected by E-irradiation. After irradiation, TGF-${\beta}1$ and IL-17 were co-localized in the papillary region of the dermis with keratin-14 (K-14)-positive cells rather than with regulatory T cells (Treg). IL-10 was not co-stained with Treg, T helper 17 (Th17) cells, dendritic cells, or macrophages. Our data indicate that TGF-${\beta}1$ is over-expressed mainly by proliferated keratinocytes in the lesions of a radiodermatitis animal model.

Regulatory roles of NKT cells in Anaplasma phagocytophilum infection

  • Choi, Kyoung-Seong;Chae, Joon-Seok
    • Korean Journal of Veterinary Research
    • /
    • v.49 no.2
    • /
    • pp.167-172
    • /
    • 2009
  • Human granulocytic anaplasmosis (HGA) is caused by the obligate intracellular bacterium Anaplasma (A.) phagocytophilum. Natural killer T (NKT) cells are key players in host defense against various microbial infections. We investigated the role of NKT cells in immune response to A. phagocytophilum infection using NKT-knockout ($J\alpha$18-/-) mice. $J\alpha$18-/- and wild-type (WT) mice were infected with low-passage A. phagocytophilum and assayed for hepatic histopathology and cytokine production during 7 days post-infection. Compared to WT controls, the infected $J\alpha$18 -/- mice had much less histopathologic lesions and less apoptosis through day 7, and lower concentrations of ${IFN\gamma}$ and IL- 12, but not of IL-10. This result suggests that NKT cells are major components in the pathogenesis of HGA.

WNT11 is a direct target of early growth response protein 1

  • Kim, JuHwan;Jung, Euitaek;Ahn, Sung Shin;Yeo, Hyunjin;Lee, Jeong Yeon;Seo, Jeong Kon;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.628-633
    • /
    • 2020
  • WNT11 is a member of the non-canonical Wnt family and plays a crucial role in tumor progression. However, the regulatory mechanisms underlying WNT11 expression are unclear. Tumor necrosis factor-alpha (TNFα) is a major inflammatory cytokine produced in the tumor microenvironment and contributes to processes associated with tumor progression, such as tumor invasion and metastasis. By using site-directed mutagenesis and introducing a serial deletion in the 5'-regulatory region of WNT11, we observed that TNFα activates the early growth response 1 (EGR1)-binding sequence (EBS) in the proximal region of WNT11 and that the transcription factor EGR1 is necessary for the TNFα-induced transcription of WNT11. EGR1 bound directly to the EBSs within the proximal 5'-regulatory region of WNT11 and ectopic expression of EGR1 stimulated WNT11 promoter activity, whereas the knockdown of EGR1 expression by RNA interference reduced TNFα-induced WNT11 expression in T47D breast cancer cells. We also observed that mitogen-activated protein kinases (MAPK), extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 kinase mediated TNFα-induced transcription of WNT11 via EGR1. Our results suggest that EGR1 directly targets WNT11 in response to TNFα stimulation in breast cancer cells.

Inhibitory activity of Terminalia chebula extract against TNF-α/IFN-γ-induced chemokine increase on human keratinocyte, HaCaT cells (TNF-α/IFN-γ 유도된 각질형성세포 염증에서 가자 추출물의 케모카인 저해 효과)

  • Jo, Il-Joo
    • The Korea Journal of Herbology
    • /
    • v.37 no.3
    • /
    • pp.41-47
    • /
    • 2022
  • Objectives : Terminalia chebula (TC) has been used as a traditional remedy to treat gastrointestinal infectious and inflammatory diseases. However, its protective effects and mechanisms against skin inflammation have not been well-elucidated. Thus, the aim of this study is to evaluate the protective effects of the TC water extract and also to suggest a putative mechanism of TC against skin injury on human keratinocytes, HaCaT cells. Methods : HaCaT cells were pre-treated with TC for 1 h and then stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) (10 ng/mL each) to induce skin inflammation and injury. After 24 h, the cells were harvested to evaluate the expression of Th2 chemokines, such as C-C motif chemokine ligand 5 (CCL5, also known as RANTES), C-C chemokine ligand 17 (CCL17, also known as TARC) and C-C chemokine ligand 22 (CCL22, also known as MDC). To investigate the regulatory mechanisms of TC, we also assessed the phosphorylation of signal transducer and activator of transcription 1 (STAT1) signaling pathways in HaCaT cells. Results : Treatment of TC decreased the mRNA levels of RANTES, TARC and MDC with a concentration dependent manner against co-stimulation of TNF-α and IFN-γ. In addition, TC significantly reduced TNF-α and IFN-γ induced phosphorylation of STAT1. Conclusions : In summary, we propose that TC may be a promising candidate for anti-inflammatory skin protector through the inhibition of chemokines via STAT1 deactivation.

Immunohistochemical Characterization of the Human Sublingual Mucosa

  • Choi, Young-Nim;Hong, Sung-Doo;Lee, Jong-Ho;Cuburu, Nicolas;Saletti, Giulietta;Czerkinsky, Cecil
    • International Journal of Oral Biology
    • /
    • v.34 no.3
    • /
    • pp.131-135
    • /
    • 2009
  • The sublingual locus has recently received great attention as a delivery site for various immunotherapies, including those that induce allergen-specific tolerance, and for vaccines that generate protective immunity. To further understand the immune functions of the human sublingual mucosa, we characterized the distribution of various immunocytes therein by immunohistochemistry. We identified professional antigen presenting cells (APCs), including Langerhans cells (LCs) and macrophages. $CD1a^+$ and $langerin^+$ LCs were further found to be distributed in the basal and supra-basal layers of the epithelium, and macrophages were identified in the lamina propria. HLA-$DR^+$ cells were observed in both the epithelium and the lamina propria, which mirrors the tissue distribution of LCs and macrophages within these tissues. $CD3^+$, $CD4^+$, and $CD8^+$ T cells were found to be distributed along the basal layer of the epithelium and also in the lamina propria. Although B cells, plasma cells, and $Foxp3^+$ regulatory T cells (Tregs) were only occasionally observed in the human sublingual mucosa in the absence of inflammation, they did show enrichment at inflammatory sites. Hence, we have further elucidated the immune cell component distribution in human sublingual mucosa.

Immune Enhancing Effect of Boummyunyuck-dan (보음면역단의 면역 증강 효과)

  • 김태균;문석재;원진희;김동웅;이종덕;문구
    • The Journal of Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.54-64
    • /
    • 2003
  • Objective : To investigate immune enhancing effects of Boummyunyuck-dan (BMD) Methods : In this study I investigated the effect of BMD on cell proliferation and viability. In addition, I investigated production of cytokines (IL-2, IL-4 and $IFN-{\gamma}$), NO, and $TNF-{\alpha}$ in human T-cell leukemia, MOLT-4 cells. The cells were cultured for 24h in the presence or absence of BMD. Result : BMD increased the cell viability by 15% (P<0.05) and enhanced IL-2, IL-4 and $IFN-{\gamma}$ production compared with media control in a dose-dependent manner (P<0.01) at 24h. BMD also increased mRNA and protein expression levels of $IFN-{\gamma}$ in MOLT-4 cells. In addition, I also assessed the effects of BMD on production of NO and $TNF-{\alpha}$ from the peritoneal macrophages because NO and $TNF-{\alpha}$ as a potent macrophage-derived immune reaction regulatory molecule has received increasing attention. However, BMD had no effect on NO and $TNF-{\alpha}$ production in the cells. Conclusion : These data indicate that BMD has some immune-enhancing effect, and that its action may be due to the proliferation and cytokine production of T cells.

  • PDF

Forsythiae suspensa regulates SREBP-1c signaling pathway as mediated with LXR alpha nuclear orphan receptor (LXR 고아핵수용체 관련 신호 억제를 통한 연교의 sterol regulatory element-binding protein-1c 조절)

  • Kim, Young-Eun;Park, Sun-Dong;Kim, Young Woo
    • Herbal Formula Science
    • /
    • v.30 no.3
    • /
    • pp.137-143
    • /
    • 2022
  • Objectives : Brain-Liver axis is an important target of the chronic human diseases. Hepatic steatosis is one of the most famous disorders in the chronic diseases. This study investigated the moderating effect of beneficial herbs on the fat accumulation, which is mediated by the LXR alpha-SREBP-1c signaling pathway. Methods : In order to confirm the SREBP-1c inhibitory effect, we performed immonoblotting ananlysis using HepG2 cells and Huh 7 cells treated by T0901317, the ligand of LXRα. Results : Forsythiae suspensa water extract (FSE) was not cytotoxicity in cell lines. FSE inhibited SREBP-1c protein expression in HepG2 and Huh7 cells induced by T0901317. In addition, FSE increased the phosphorylation of LKB1, which is associated with LXR-related pathway in HepG2 and Huh 7 cells. Conclusions : These results showed that FSE activated LKB1 to suppress SREBP-1c, which protects the cells against oxidative stress.

Quercetin induces cell death in cervical cancer by reducing O-GlcNAcylation of adenosine monophosphate-activated protein kinase

  • Ali, Akhtar;Kim, Min Jun;Kim, Min Young;Lee, Han Ju;Roh, Gu Seob;Kim, Hyun Joon;Cho, Gyeong Jae;Choi, Wan Sung
    • Anatomy and Cell Biology
    • /
    • v.51 no.4
    • /
    • pp.274-283
    • /
    • 2018
  • Hyper-O-GlcNAcylation is a general feature of cancer which contributes to various cancer phenotypes, including cell proliferation and cell growth. Quercetin, a naturally occurring dietary flavonoid, has been reported to reduce the proliferation and growth of cancer. Several reports of the anticancer effect of quercetin have been published, but there is no study regarding its effect on O-GlcNAcylation. The aim of this study was to investigate the anticancer effect of quercetin on HeLa cells and compare this with its effect on HaCaT cells. Cell viability and cell death were determined by MTT and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling assays. O-GlcNAcylation of AMP-activated protein kinase (AMPK) was examined by succinylated wheat germ agglutinin pulldown and immunoprecipitation. Immunofluorescence staining was used to detect the immunoreactivitiy of O-linked N-acetylglucosamine transferase (OGT) and sterol regulatory element binding protein 1 (SREBP-1). Quercetin decreased cell proliferation and induced cell death, but its effect on HaCaT cells was lower than that on HeLa cells. O-GlcNAcylation level was higher in HeLa cells than in HaCaT cells. Quercetin decreased the expression of global O-GlcNAcylation and increased AMPK activation by reducing the O-GlcNAcylation of AMPK. AMPK activation due to reduced O-GlcNAcylation of AMPK was confirmed by treatment with 6-diazo-5-oxo-L-norleucine. Our results also demonstrated that quercetin regulated SREBP-1 and its transcriptional targets. Furthermore, immunofluorescence staining showed that quercetin treatment decreased the immunoreactivities of OGT and SREBP-1 in HeLa cells. Our findings demonstrate that quercetin exhibited its anticancer effect by decreasing the O-GlcNAcylation of AMPK. Further studies are needed to explore how quercetin regulates O-GlcNAcylation in cancer.

Inhibition of Lipase Activity and Preadipocyte Differentiation in 3T3-L1 Cells Treated with Sargassum horneri Extract (괭생이모자반 추출물의 리파아제 저해 활성 및 3T3-L1 지방전구세포 분화억제 효과)

  • Hong, Ji Woo;Park, Ha Young;Park, Jae Hyun;Kim, So Hee;Kim, Han A;Kim, Jin-Woo
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.61-67
    • /
    • 2022
  • In this study, in order to evaluate the anti-obesity effect of sargassum horneri extract, the effects of the extract on lipase activity and preadipocyte differentiation in 3T3-L1 cells were investigated. S. horneri extract between 0.0 and 1.0 mg/mL showed no cytotoxicity and inhibited lipase activity by 68.1%. When S. horneri extract was utilized at levels of 0.25, 0.5, and 1.0 mg/mL in 3T3-L1 cells, preadipocytes differentiation decreased by 11.4, 19.7, and 25.6%, respectively, showing anti-obesity effects. In addition, after treatment with 1.0 mg/mL S. horneri extract, the mRNA expression levels of sterol regulatory element binding proteins-1c (SREBP-1c), peroxisome proliferator activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (CEBP-α), fatty acid synthase (FAS), and stearoyl-CoA desaturase1 (SCD1) in 3T3-L1 cells were significantly decreased (p < 0.05) by 65.2, 54.9, 50.0, 33.8, and 33.8% respectively. These results showed that S. horneri extract suppresses lipase activity and prophylactic preadipocyte differentiation in 3T3-L1, and thus can be used as an anti-obesity agent in functional foods and medicines.

Crystal Structure of the Regulatory Domain of MexT, a Transcriptional Activator of the MexEF-OprN Efflux Pump in Pseudomonas aeruginosa

  • Kim, Suhyeon;Kim, Songhee H.;Ahn, Jinsook;Jo, Inseong;Lee, Zee-Won;Choi, Sang Ho;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.850-857
    • /
    • 2019
  • The Gram-negative opportunistic pathogen, Pseudomonas aeruginosa, has multiple multidrug efflux pumps. MexT, a LysR-type transcriptional regulator, functions as a transcriptional activator of the MexEF-OprN efflux system. MexT consists of an N-terminal DNA-binding domain and a C-terminal regulatory domain (RD). Little is known regarding MexT ligands and its mechanism of activation. We elucidated the crystal structure of the MexT RD at 2.0 Å resolution. The structure comprised two protomer chains in a dimeric arrangement. MexT possessed an arginine-rich region and a hydrophobic patch lined by a variable loop, both of which are putative ligand-binding sites. The three-dimensional structure of MexT provided clues to the interacting ligand structure. A DNase I footprinting assay of full-length MexT identified two MexT-binding sequence in the mexEF-oprN promoter. Our findings enhance the understanding of the regulation of MexT-dependent activation of efflux pumps.