• Title/Summary/Keyword: regularization of solutions

Search Result 28, Processing Time 0.031 seconds

An optimal regularization for structural parameter estimation from modal response

  • Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.22 no.4
    • /
    • pp.401-418
    • /
    • 2006
  • Solutions to the problems of structural parameter estimation from modal response using leastsquares minimization of force or displacement residuals are generally sensitive to noise in the response measurements. The sensitivity of the parameter estimates is governed by the physical characteristics of the structure and certain features of the noisy measurements. It has been shown that the regularization method can be used to reduce effects of the measurement noise on the estimation error through adding a regularization function to the parameter estimation objective function. In this paper, we adopt the regularization function as the Euclidean norm of the difference between the values of the currently estimated parameters and the a priori parameter estimates. The effect of the regularization function on the outcome of parameter estimation is determined by a regularization factor. Based on a singular value decomposition of the sensitivity matrix of the structural response, it is shown that the optimal regularization factor is obtained by using the maximum singular value of the sensitivity matrix. This selection exhibits the condition where the effect of the a priori estimates on the solutions to the parameter estimation problem is minimal. The performance of the proposed algorithm is investigated in comparison with certain algorithms selected from the literature by using a numerical example.

REGULARIZATION FOR THE PROBLEM OF FINDING A SOLUTION OF A SYSTEM OF NONLINEAR MONOTONE ILL-POSED EQUATIONS IN BANACH SPACES

  • Tran, Thi Huong;Kim, Jong Kyu;Nguyen, Thi Thu Thuy
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.849-875
    • /
    • 2018
  • The purpose of this paper is to present an operator method of regularization for the problem of finding a solution of a system of nonlinear ill-posed equations with a monotone hemicontinuous mapping and N inverse-strongly monotone mappings in Banach spaces. A regularization parameter choice is given and convergence rate of the regularized solutions is estimated. We also give the convergence and convergence rate for regularized solutions in connection with the finite-dimensional approximation. An iterative regularization method of zero order in a real Hilbert space and two examples of numerical expressions are also given to illustrate the effectiveness of the proposed methods.

Optimizing structural topology patterns using regularization of Heaviside function

  • Lee, Dongkyu;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1157-1176
    • /
    • 2015
  • This study presents optimizing structural topology patterns using regularization of Heaviside function. The present method needs not filtering process to typical SIMP method. Using the penalty formulation of the SIMP approach, a topology optimization problem is formulated in co-operation, i.e., couple-signals, with design variable values of discrete elements and a regularized Heaviside step function. The regularization of discontinuous material distributions is a key scheme in order to improve the numerical problems of material topology optimization with 0 (void)-1 (solid) solutions. The weak forms of an equilibrium equation are expressed using a coupled regularized Heaviside function to evaluate sensitivity analysis. Numerical results show that the incorporation of the regularized Heaviside function and the SIMP leads to convergent solutions. This method is tested using several examples of a linear elastostatic structure. It demonstrates that improved optimal solutions can be obtained without the additional use of sensitivity filtering to improve the discontinuous 0-1 solutions, which have generally been used in material topology optimization problems.

Effective Determination of Optimal Regularization Parameter in Rational Polynomial Coefficients Derivation

  • Youn, Junhee;Hong, Changhee;Kim, TaeHoon;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.577-583
    • /
    • 2013
  • Recently, massive archives of ground information imagery from new sensors have become available. To establish a functional relationship between the image and the ground space, sensor models are required. The rational functional model (RFM), which is used as an alternative to the rigorous sensor model, is an attractive option owing to its generality and simplicity. To determine the rational polynomial coefficients (RPC) in RFM, however, we encounter the problem of obtaining a stable solution. The design matrix for solutions is usually ill-conditioned in the experiments. To solve this unstable solution problem, regularization techniques are generally used. In this paper, we describe the effective determination of the optimal regularization parameter in the regularization technique during RPC derivation. A brief mathematical background of RFM is presented, followed by numerical approaches for effective determination of the optimal regularization parameter using the Euler Method. Experiments are performed assuming that a tilted aerial image is taken with a known rigorous sensor. To show the effectiveness, calculation time and RMSE between L-curve method and proposed method is compared.

Tikhonov's Solution of Unstable Axisymmetric Initial Value Problem of Wave Propagation: Deteriorated Noisy Measurement Data

  • Jang, Taek-Soo;Han, So-Lyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • The primary aim of the paper is to solve an unstable axisymmetric initial value problem of wave propagation when given initial data that is deteriorated by noise such as measurement error. To overcome the instability of the problem, Tikhonov's regularization, known as a non-iterative numerical regularization method, is introduced to solve the problem. The L-curvecriterion is introduced to find the optimal regularization parameter for the solution. It is confirmed that fairly stable solutions are realized and that they are accurate when compared to the exact solution.

Updating finite element model using dynamic perturbation method and regularization algorithm

  • Chen, Hua-Peng;Huang, Tian-Li
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.427-442
    • /
    • 2012
  • An effective approach for updating finite element model is presented which can provide reliable estimates for structural updating parameters from identified operational modal data. On the basis of the dynamic perturbation method, an exact relationship between the perturbation of structural parameters such as stiffness change and the modal properties of the tested structure is developed. An iterative solution procedure is then provided to solve for the structural updating parameters that characterise the modifications of structural parameters at element level, giving optimised solutions in the least squares sense without requiring an optimisation method. A regularization algorithm based on the Tikhonov solution incorporating the generalised cross-validation method is employed to reduce the influence of measurement errors in vibration modal data and then to produce stable and reasonable solutions for the structural updating parameters. The Canton Tower benchmark problem established by the Hong Kong Polytechnic University is employed to demonstrate the effectiveness and applicability of the proposed model updating technique. The results from the benchmark problem studies show that the proposed technique can successfully adjust the reduced finite element model of the structure using only limited number of frequencies identified from the recorded ambient vibration measurements.

Estimation of Hysteretic Behaviors of a Seismic Isolator Using a Regularized Output Error Estimator (정규화된 OEE를 이용한 지진격리장치의 이력거동 추정)

  • 박현우;전영선;서정문
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.85-92
    • /
    • 2003
  • Hysteretic behaviors of a seismic isolator are identified by using the regularized output error estimator (OEE) based on the secant stiffness model. A proper regularity condition of tangent stiffness for the current OEE is proposed considering the regularity condition of Duhem hysteretic operator. The proposed regularity condition is defined by 12-norm of the tangent stiffness with respect to time. The secant stiffness model for the OEE is obtained by approximating the tangent stiffness under the proposed regularity condition by the secant stiffness at each time step. A least square method is employed to minimize the difference between the calculated response and measured response for the OEE. The regularity condition of the secant stiffness is utilized to alleviate ill-posedness of the OEE and to yield numerically stable solutions through the regularization technique. An optimal regularization factor determined by geometric mean scheme (GMS) is used to yield appropriate regularization effects on the OEE.

  • PDF

Finite Element Model Updating of Framed Structures Using Constrained Optimization (구속조건을 가진 최적화기법을 이용한 골조구조물의 유한요소모델 개선기법)

  • Yu, Eun-Jong;Kim, Ho-Geun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.446-451
    • /
    • 2007
  • An Improved finite element model updating method to address the numerical difficulty associated with ill-conditioning and rank-deficiency. These difficulties frequently occur in model updating problems, when the identification of a larger number of physical parameters is attempted than that warranted by the information content of the experimental data. Based on the standard Bounded Variables Least-squares (BVLS) method, which incorporates the usual upper/lower-bound constraints, the proposed method is equipped with new constraints based on the correlation coefficients between the sensitivity vectors of updating parameters. The effectiveness of the proposed method is investigated through the numerical simulation of a simple framed structure by comparing the results of the proposed method with those obtained via pure BVLS and the regularization method. The comparison indicated that the proposed method and the regularization method yield approximate solutions with similar accuracy.

  • PDF

SHALLOW ARCHES WITH WEAK AND STRONG DAMPING

  • Gutman, Semion;Ha, Junhong
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.945-966
    • /
    • 2017
  • The paper develops a rigorous mathematical framework for the behavior of arch and membrane like structures. Our main goal is to incorporate moving point loads. Both the weak and the strong damping cases are considered. First, we prove the existence and the uniqueness of the solutions. Then it is shown that the solution in the weak damping case is the limit of the strong damping solutions, as the strong damping vanishes. The theory is applied to a car moving on a bridge.

A Study on the Ill-posed Inverse Problem of Two-dimensional Waves due to Pressure Distribution Using Regularization Method (2차원 자유표면파의 부정치 역문제에 대한 정규화기법의 적용)

  • Taek-S. Jang;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.48-55
    • /
    • 1999
  • In this paper, the ill-posed inverse problem of surface waves caused by a two-dimensional pulsating pressure distribution on the free surface is studied using the regularization method. In order to exemplify the method, a cosine pressure distribution on a limited range of the undisturbed free surface is considered. By taking the resulting horizontal velocity as input data, the corresponding pressure is determined numerically by three different regularization schemes. It is found that the iterated Tikhonov method provides with the most accurate result, while solutions obtained from the Landweber-Friedman regularization are most stable.

  • PDF