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SHALLOW ARCHES WITH WEAK AND STRONG DAMPING

Semion Gutman and Junhong Ha

Abstract. The paper develops a rigorous mathematical framework for
the behavior of arch and membrane like structures. Our main goal is to
incorporate moving point loads. Both the weak and the strong damping
cases are considered. First, we prove the existence and the uniqueness of
the solutions. Then it is shown that the solution in the weak damping
case is the limit of the strong damping solutions, as the strong damping
vanishes. The theory is applied to a car moving on a bridge.

1. Introduction

Building long span arch roofs and bridges has been an important practical
problem that has occupied structural engineers for many years. The motion
of such structures has been studied by engineers and mathematicians since at
least 1930s, see [9]. A general mathematical model for the motion of arches and
membrane like structures can be found in [4], and it is given by the following
non-local integro-differential equation

(1.1)

ytt + α∆2y −

(

β + γ

∫

Ω

|∇y|2 dx

)

∆y + ξy + κyt − λ∆yt + µ∆2yt

−

(

δ

∣

∣

∣

∣

∫

Ω

∇y · ∇yt dx

∣

∣

∣

∣

q−2 ∫

Ω

∇y · ∇yt dx

)

∆y = f.

The function y = y(x, t) describing the membrane’s deflection is defined
on Ω × (0, T ), where Ω ∈ R

d. In the one-dimensional case d = 1, function
y(x, t) describes the deflection of an arch, which is positioned over the interval
Ω = (0, l) of the x axis.

The physical meaning of the parameters in (1.1) can be found in [4]. We just
mention that the parameters α and γ are always positive, parameters δ, λ, µ
are non-negative, and the others are arbitrary real numbers. The unsigned
parameter β accounts for the axial force acting in the reference configuration.
Values β > 0 appear when the beam is stretched, and β < 0 when the beam
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is compressed. Both hinged ends and clamped (or built-in) ends boundary
conditions are considered. Mathematical and engineering issues of interest
related to (1.1) are local and global existence and uniqueness, stability and
bifurcation of solutions, as well as their chaotic and snap-through behavior.

These and other results on the weak solutions for (1.1) have been established
by us in a more general framework in [7] assuming f ∈ L2(0, T ;L2(Ω)). This
paper also contains some additional background information.

There has been significant recent activity in the engineering research on
shallow arches with the emphasis on concentrated, distributed and moving
loads. Assuming the initial arch shape to be half-sine, circular or parabolic,
experimental and computer simulated behavior of arches has been studied, [3],
[8]. The questions are the static and dynamic buckling of the arch.

To simulate the concentrated load, the acting forces have been modeled
with delta functions as f(x, t) = Pδ(x)S(t), where the constant P is the load
magnitude, and S(t) is a step function, see [5]. In [2], the Fourier expansion
of the solution has been used to study the snap-through buckling of a shallow
arch under a moving point load f = Qδ(x− ct). However, in such a setting we
can no longer assume that f ∈ L2(0, T ;L2(Ω)), since the load f should have
the values in a larger space of distributions. Thus the previously mentioned
theoretical results are no longer valid.

The main purpose of this paper is to establish the existence and uniqueness
and the stability of solutions of (1.1) under such more general assumptions
on the load f . The new elements of our study are considerations of the weak
(µ = 0), and the strong (µ > 0) damping cases, and the relations between them
as µ → 0. These results form a theoretical foundation for subsequent studies
of the stability of shallow arches with constant and moving loads.

The problem is set on a bounded domain Ω ⊂ R
d with a sufficiently smooth

boundary ∂Ω. The governing equation is

(1.2) ytt + α∆2y −

[

β + γ

∫

Ω

|∇y|2 dx

]

∆y + µ∆2yt + κyt = f

on Ω× (0, T ). The initial conditions are

(1.3) y(x, 0) = u0(x), yt(x, 0) = v0(x), x ∈ Ω.

The boundary conditions are either of the hinged type

(1.4) y = ∆y = 0, (x, t) ∈ ∂Ω× (0, T ),

or the clamped (built-in) type

(1.5) y =
∂y

∂n
= 0, (x, t) ∈ ∂Ω× (0, T ).

Here α, γ ∈ R
+ = (0,∞), µ ≥ 0, β, κ ∈ R, and the load f ∈ L2(0, T ;V ′).

The space V ′ is defined in the next section, where we consider the weak for-
mulation of the problem. Note that the parameter δ in (1.1) is set to zero.
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However this assumption does not restrict the generality of our approach. For
the extension to the case δ > 0 see [1].

The abstract framework for the problems is given in Section 2. The unique-
ness and the existence of solutions in the strong damping case µ > 0 is consid-
ered in Section 3. The weak damping case µ = 0 is examined in Section 4. The
regularization, i.e., the continuous dependence of the solutions on the damping
parameter µ, as µ → 0, is considered in Section 5. The developed theory is
applied to a car moving across a long bridge in Section 6.

2. Setup

Let the Hilbert space H = L2(Ω) have the norm |u|, and the inner product
(u, v). For the hinged boundary conditions we choose V = H1

0 (Ω) ∩ H2(Ω),
and for the clamped boundary conditions let V = H2

0 (Ω). In both cases V
is a Hilbert space with the inner product ((u, v)) = (∆u,∆v), and the norm
‖u‖ = |∆u|, u, v ∈ V . This norm is equivalent to the standard norm in H2(Ω),
see [6].

Since C∞
0 (Ω) is dense in H , it follows that V is densely embedded in H . In

fact, the embedding is compact and continuous. Identifying H with its dual
gives a Gelfand triple V ⊂ H ⊂ V ′, where the duality pairing 〈·, ·〉 between V
and its dual V ′ with the norm ‖ · ‖V ′ is consistent with the inner product in
H . Given a function f defined on [0, T ] with values in a Banach space X , we

denote by ḟ its derivative with respect to t in an appropriate sense.
To set up the weak formulation of the problem (1.2)-(1.5), we introduce

operators A,B, and G, corresponding to the terms of the equation (1.2), and
state their properties in the following lemmas, proved in [7].

Lemma 2.1. (i) Define operator A by

(2.1) 〈Au, v〉 =

∫

Ω

∆u∆v dx, u, v ∈ V.

Then A is a linear continuous operator from V into V ′.

(ii) Define operator B by

(2.2) Bu = ∆u, u ∈ V.

Then B is a linear continuous operator from V into H.

(iii) Define operator G by

(2.3) Gu = |∇u|2∆u, u ∈ V.

Then G is a nonlinear continuous operator from V into H, which is

Lipschitz continuous on bounded subsets of V , that is,

(2.4) |Gu−Gv| ≤ c(‖u‖2 + ‖v‖2)‖u− v‖, u, v ∈ V.

Considered as an operator from V into V ′, operator G is Lipschitz

continuous on bounded subsets of V , that is,

(2.5) ‖Gu−Gv‖V ′ ≤ c(‖u‖2 + ‖v‖2)|∇u−∇v|, u, v ∈ V.
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Furthermore, operators B and G map weakly convergent sequences in

V into strongly convergent sequences in V ′.

We also need the following technical result established in [7].

Lemma 2.2. Let h ∈ L1(0, T ). Suppose that yk ∈ L∞(0, T ;V ), ẏk ∈ L∞(0, T ;
H), with ‖yk(t)‖ ≤ 1, and |ẏk(t)| ≤ h(t) a.e. on [0, T ] for any natural number

k ∈ N. Suppose that yk ⇀ y, weakly in L2(0, T ;V ) as k → ∞. Then, after a

modification on a set of measure zero in [0, T ],

(i) yk → y in C([0, T ];H) as k → ∞,

(ii) |∇yk −∇y| → 0 in L2(0, T ) as k → ∞.

Let X be a Banach space, and H1(0, T ;X) = {f : f, ḟ ∈ L2(0, T ;X)}. We
will need the following integration by parts formula.

Lemma 2.3. If f ∈ H1(0, T ;V ′), and g ∈ H1(0, T ;V ), then

(2.6)

∫ t

0

〈f, ġ〉 ds = 〈f(t), g(t)〉 − 〈f(0), g(0)〉 −

∫ t

0

〈ḟ , g〉 ds.

Proof. Formula (2.6) is valid for any f ∈ C1([0, T ], V ′), and g ∈ C1([0, T ], V ).
Fix g ∈ C1([0, T ], V ), and approximate given f by smooth functions fn ∈

C1([0, T ], V ′) in such a way that fn → f and ḟn → ḟ in L2(0, T ;V ′) as n → ∞.
Then fn → f in C([0, T ], V ′). Use (2.6) with f replaced by fn, and pass
to the limit as n → ∞ to obtain (2.6) valid for any f ∈ H1(0, T ;V ′), and
g ∈ C1([0, T ], V ). Now approximate g by gn in H1(0, T ;V ). Passing to the
limit in (2.6) for such a sequence gives the desired result. �

Let the operator A be defined by equation (2.1). Its eigenfunctions {wk}
∞
k=1

⊂ D(A) form an orthonormal basis in H . Let Awk = µkwk, k ∈ N. Then
system {wk/

√
µk}

∞
k=1 is an orthonormal basis in V , see Section 2.2.1 of [11].

We have the following results needed for the approximation of the solutions,
see [7].

Lemma 2.4. Let m ∈ N, and the operator Pm : H → H and P ∗
m : V ′ → V ′ be

defined by

(2.7) Pmh =
m
∑

k=1

(h,wk)wk, h ∈ H,

and

(2.8) 〈P ∗
mg, v〉 = 〈g, Pmv〉, g ∈ V ′, v ∈ V.

Then

(i) Operator Pm is an orthogonal projection in H, with |Pmh| ≤ |h| for
any h ∈ H. Also, |Pmh− h| → 0 as m → ∞.

(ii) Operator Pm is an orthogonal projection in V , with ‖Pmv‖ ≤ ‖v‖ for

any v ∈ V . Also, ‖Pmv − v‖ → 0 as m → ∞.
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(iii) Operator P ∗
m is the adjoint operator of Pm in V ′, with ‖P ∗

mg‖V ′ ≤
‖g‖V ′ for any g ∈ V ′. Also P ∗

mg ⇀ g weakly in V ′ as m → ∞.

3. Existence of solutions in the strong damping case µ > 0

First, we consider the theory for the strong damping case µ > 0, and post-
pone the weak damping case µ = 0 to Section 4. Here and in the sequel c
denotes various constants that do not depend on the solution y or its approxi-
mations ym. Keeping in mind that one of our goals is to consider what happens
to the solutions when the strong damping vanishes, i.e., µ → 0, we will keep
an explicit dependency on the damping parameter µ. Let

Wr[0, T ] = {y : y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;V ), ÿ ∈ L2(0, T ;V ′)}.

Here ẏ, ÿ denote the derivatives with respect to t. They are understood in the
sense of distributions with the values in V and V ′, see [10]. Space Wr[0, T ]
becomes a Hilbert space when its inner product is set to be the sum of the
inner products in the constituent spaces.

Definition 3.1. Let u0 ∈ V, v0 ∈ H, T > 0, and f ∈ L2(0, T ;V ′). Func-
tion y ∈ Wr[0, T ] is called a weak solution of the problem (1.2)-(1.5), if y ∈
L∞(0, T ;V ), ẏ ∈ L∞(0, T ;H), equation

(3.1) ÿ + µAẏ + κẏ + αAy − βBy − γGy = f

is satisfied in V ′ a.e. on [0, T ], and the initial conditions

(3.2) y(0) = u0, ẏ(0) = v0,

are satisfied in V and H respectively. We write y = y(u0, v0, f) to emphasize
the dependence of y on the initial conditions and f . The initial conditions
make sense, since it follows from Lemma 3.3, that y is continuous in V , and ẏ
is continuous in H .

Definition 3.2. Let m ∈ N. Function ym is called an approximate solution of
the abstract problem (3.1)-(3.2), if ym, ẏm ∈ Wr[0, T ] ∩ L∞(0, T ;V ), equation

(3.3) ÿm + µAẏm + κẏm + αAym − βBym − γGym = P ∗
mf

is satisfied in V ′ a.e. on [0, T ], and the initial conditions

(3.4) ym(0) = Pmu0, ẏm(0) = Pmv0,

are satisfied in V . The solution ym will be denoted by ym(u0, v0, f), when it
will be necessary to indicate its dependence on the initial conditions and f .

The following lemma is central to our method.

Lemma 3.3. Let w ∈ Wr[0, T ]. Then, after a modification on the set of mea-

sure zero, w ∈ C([0, T ];V ), ẇ ∈ C([0, T ];H) and, in the sense of distributions

on (0, T ), one has

(3.5)
d

dt
||w||2 = 2〈Aw, ẇ〉, and

d

dt
|ẇ|2 = 2〈ẅ, ẇ〉,
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where the linear operator A is defined in (2.1).

Proof. According to Lemma 2.3.2 in [11], if u ∈ L2(0, T ;V ) and its derivative
u̇ ∈ L2(0, T ;V ′), then u is continuous from [0, T ] into H after a modification
on a set of measure zero, and it satisfies d/dt|u|2 = 2〈u̇, u〉. Letting u = ẇ we
get ẇ ∈ C([0, T ];H), and the second equality in (3.5). For the first equality in
(3.5) we can use Lemma 2.3.2 in [11] with V = H = V ′, or just notice that the
mapping x → ‖x‖2 is Fréchet differentiable. �

First, we give a priori estimates for the weak solutions y. They are also valid
for the approximate solutions ym with the same c, since (3.3) is the same as
(3.1) with f replaced by P ∗

mf , and ‖P ∗
mf‖V ′ ≤ ‖f‖V ′ .

Lemma 3.4. Let y be a solution of (3.1)-(3.2). Then y ∈ C([0, T ];V ), ẏ ∈
C([0, T ];H). Furthermore, there exists c, independent of µ, such that

(i) If f ∈ L2(0, T ;H), then

(3.6) |ẏ(t)|2 + ‖y(t)‖2 ≤ c

(

|v0|
2 + ‖u0‖

2 + ‖u0‖
4 +

∫ t

0

|f |2 ds

)

,

(ii) If f ∈ L2(0, T ;V ′), then

(3.7)

|ẏ(t)|2 + ‖y(t)‖2 +

∫ t

0

‖ẏ(s)‖2 ds

≤
c

µ2

(

|v0|
2 + ‖u0‖

2 + ‖u0‖
4 +

∫ t

0

‖f‖2V ′ ds

)

,

(iii) If f ∈ H1(0, T ;V ′), then

(3.8) |ẏ(t)|2+ ‖y(t)‖2 ≤ c

(

|v0|
2 + ‖u0‖

2 + ‖u0‖
4 + ‖f(0)‖2V ′ +

∫ t

0

‖ḟ‖2V ′ ds

)

for any t ∈ [0, T ].

Proof. Take the inner product of (3.1) with ẏ, and use Lemma 3.3 to get

(3.9)
1

2

d

dt
{|ẏ|2 + α‖y‖2 +

γ

2
|∇y|4}+ µ‖ẏ(t)‖2 = 〈f, ẏ〉 − κ|ẏ|2 + β(∆y, ẏ).

Integrate (3.9) from 0 to t to get

(3.10)

|ẏ|2 + α‖y‖2 +
γ

2
|∇y|4 + 2µ

∫ t

0

‖ẏ‖2 ds− |v0|
2 − α‖u0‖

2 −
γ

2
|∇u0|

4

= − 2κ

∫ t

0

|ẏ|2 ds+ 2β

∫ t

0

(∆y, ẏ) ds+ 2

∫ t

0

〈f, ẏ〉 ds.

The estimate of the last term depends on the condition imposed on f .
If f ∈ L2(0, T ;H), then

2

∣

∣

∣

∣

∫ t

0

〈f, ẏ〉 ds

∣

∣

∣

∣

≤

∫ t

0

|f |2 ds+

∫ t

0

|ẏ|2 ds.
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Therefore, using |∇u0| ≤ c‖u0‖,

|ẏ|2 + α‖y‖2 ≤ |v0|
2 + α‖u0‖

2 + c‖u0‖
4 + 2|κ|

∫ t

0

|ẏ|2 ds

+ |β|

∫ t

0

(‖y‖2 + |ẏ|2) ds+

∫ t

0

|f |2 ds+

∫ t

0

|ẏ|2 ds,

and (3.6) follows from the Gronwall’s inequality.
If f ∈ L2(0, T ;V ′), then

2

∣

∣

∣

∣

∫ t

0

〈f, ẏ〉 ds

∣

∣

∣

∣

≤
1

µ

∫ t

0

‖f‖2V ′ ds+ µ

∫ t

0

‖ẏ‖2 ds,

and

|ẏ|2 + α‖y‖2 + µ

∫ t

0

‖ẏ‖2 − (|v0|
2 + α‖u0‖

2 + c‖u0‖
4), ds

≤ |β|

∫ t

0

(‖y‖2 + |ẏ|2) ds+ 2|κ|

∫ t

0

|ẏ|2 ds+
1

µ

∫ t

0

‖f‖2V ′ ds.

Whence we have

|ẏ|2 + ‖y‖2 +

∫ t

0

‖ẏ‖2ds

≤
c

µ2

(

|v0|
2 + ‖u0‖

2 + |∇u0|
4 +

∫ t

0

‖f‖2V ′ds+

∫ t

0

(‖y‖2 + |ẏ|2) ds

)

,

and Gronwall’s inequality gives (3.7).
To obtain inequality (3.8), we use the integration by parts formula (2.6)

to estimate the f term in the above derivation. First, notice that the term
‖f(t)‖2V ′ can be estimated as follows

‖f(t)‖V ′ ≤ ‖f(0)‖V ′ +

∫ t

0

‖ḟ‖V ′ ds ≤ ‖f(0)‖V ′ +
√
t

(∫ t

0

‖ḟ‖2V ′ds

)1/2

,

which implies

‖f(t)‖2V ′ ≤ 2‖f(0)‖2V ′ + 2t

∫ t

0

‖ḟ‖2V ′ ds.

Then

2

∣

∣

∣

∣

∫ t

0

〈f, ẏ〉 ds

∣

∣

∣

∣

= 2

∣

∣

∣

∣

〈f(t), y(t)〉 − 〈f(0), u0〉 −

∫ t

0

〈ḟ , y〉 ds

∣

∣

∣

∣

(3.11)

≤
α

2
‖y(t)‖2 +

2

α
‖f(t)‖2V ′ + ‖f(0)‖2V ′ + ‖u0‖

2 +

∫ t

0

‖ḟ‖2V ′ ds+

∫ t

0

‖y‖2 ds

≤
α

2
‖y(t)‖2 +

(

4

α
+ 1

)

‖f(0)‖2V ′ +

(

4

α
t+ 1

)∫ t

0

‖ḟ‖2V ′ds+

∫ t

0

‖y‖2ds.
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Therefore

|ẏ|2 + α‖y‖2 +
γ

2
|∇y|4 + 2µ

∫ t

0

‖ẏ‖2 ds− |v0|
2 − α‖u0‖

2 −
γ

2
|∇u0|

4

= − 2κ

∫ t

0

|ẏ|2 ds+ 2β

∫ t

0

(∆y, ẏ) ds+ 2

∫ t

0

〈f, ẏ〉 ds

≤ 2|κ|

∫ t

0

|ẏ|2 ds+ |β|

∫ t

0

(‖y‖2 + |ẏ|2) ds+
α

2
‖y(t)‖2 +

(

4

α
+ 1

)

‖f(0)‖2V ′

+

(

4

α
t+ 1

)∫ t

0

‖ḟ‖2V ′ds+

∫ t

0

‖y‖2ds.

Whence we have

|ẏ|2 + ‖y‖2 ≤ c(|v0|
2 + ‖u0‖

2 + |∇u0|
4 + ‖f(0)‖2V ′)

+ c

(∫ t

0

‖ḟ‖2V ′ds+

∫ t

0

(‖y‖2 + |ẏ|2) ds

)

,

and Gronwall’s inequality gives (3.8).
The conclusions y ∈ C([0, T ];V ), ẏ ∈ C([0, T ];H) follow from Lemma 3.3.

�

Next, we show the continuous dependence of the solutions y(u0, v0, f) on
the initial conditions and f . Just like in Lemma 3.4, there are three estimates,
depending on the conditions imposed on f .

Lemma 3.5. Let u0, ū0 ∈ V , v0, v̄0 ∈ H, f, f̄ ∈ L2(0, T ;V ′), and y =
y(u0, v0, f), ȳ(ū0, v̄0, f̄) be the corresponding solutions of (3.1)–(3.2). Then

there exists a constant c, independent of µ, such that

(i) If f, f̄ ∈ L2(0, T ;H), then

(3.12)

| ˙̄y(t)− ẏ(t)|2 + ‖ȳ(t)− y(t)‖2

≤ c

(

|v̄0 − v0|
2 + ‖ū0 − u0‖

2 + ‖ū0 − u0‖
4 +

∫ t

0

|f̄ − f |2 ds

)

,

(ii) If f, f̄ ∈ L2(0, T ;V ′), then

(3.13)

| ˙̄y(t)− ẏ(t)|2 + ‖ȳ(t)− y(t)‖2 +

∫ t

0

‖ ˙̄y − ẏ‖2 ds

≤
c

µ2

(

|v̄0 − v0|
2 + ‖ū0 − u0‖

2 + ‖ū0 − u0‖
4 +

∫ t

0

‖f̄ − f‖2V ′ ds

)

,

(iii) If f, f̄ ∈ H1(0, T ;V ′), then

(3.14)

| ˙̄y(t)− ẏ(t)|2 + ‖ȳ(t)− y(t)‖2 ≤ c

(

|v̄0 − v0|
2 + ‖ū0 − u0‖

2

+ ‖ū0 − u0‖
4 + ‖f̄(0)− f(0)‖2V ′ +

∫ t

0

‖ ˙̄f − ḟ‖2V ′ ds

)
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for any t ∈ [0, T ].
In every case the solution of the problem (3.1)–(3.2) is unique.

Proof. Let y, ȳ be two solutions of (3.1)–(3.2). Then their difference z = ȳ− y
satisfies

z̈ + µAż + κż + αAz − βBz − γ(Gȳ −Gy) = f̄ − f.

By Lemma 2.1, B,G : V → H are Lipschitz continuous on bounded subsets of
V . Also,

|Gȳ(t)−Gy(t)| ≤ C‖ȳ(t)− y(t)‖, t ∈ [0, T ].

The same inequality is also satisfied when operator G is replaced by B. The
constant C depends on the bounds for ȳ and y in V . These bounds depend
only on the initial conditions, as well as on the functions f̄ and f according
to Lemma 3.4. Now we can argue as in Lemma 3.4 to obtain the required
inequalities. The uniqueness follows from these inequalities when ū0 = u0,
v̄0 = v0, and f̄ = f . �

It remains to show the existence of the weak solutions in the strong damping
case.

Theorem 3.6. Fix µ > 0. Let u0 ∈ V, v0 ∈ H, T > 0, and f ∈ L2(0, T ;V ′).

(i) Then there exists a unique solution y of the problem (3.1)–(3.2). The

solution satisfies y ∈ Wr[0, T ] ∩ C([0, T ];V ), and ẏ ∈ C([0, T ];H).
(ii) If ym is an approximate solution, then ym → y in C([0, T ];V ), and

ẏm → ẏ in C([0, T ];H) as m → ∞.

Proof. Fix m ∈ N. Let us construct an approximate solution xm with values
in Vm = span{w1, w2, . . . , wm} as follows. Let

(3.15) xm(t) =

m
∑

j=1

gj,m(t)wj ,

where the expansion is over the eigenfunctions of A, and real-valued functions
gj := gj,m(t), j = 1, 2, . . . ,m are the solutions of the following system of m
equations

(3.16)
〈ẍm + µAẋm + κẋm + αAxm − βBxm − γGxm, wk〉 = 〈f, wk〉,

(xm(0), wk) = (Pmu0, wk), (ẋm(0), wk) = (Pmv0, wk),

where k = 1, 2, . . . ,m. Here we used 〈P ∗
mf, wk〉 = 〈f, Pmwk〉 = 〈f, wk〉 for such

k.
Since (∇wk,∇wj) = 0 for k 6= j, and |∇wk|

2 = λk :=
√
µk, we get an

explicit expression

g̈k(t)+µλ2
kgk(t)+κġk(t)+αλ2

kgk(t)+βλkgk(t)+γλk

m
∑

j=1

λ2
j |gj(t)|

2 gk(t)=〈f, wk〉,

gk(0) = (u0, wk), ġk(0) = (v0, wk),
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where k = 1, 2, . . . ,m. This initial value problem for the system of m ODEs
has a unique solution satisfying gk, ġk ∈ C[0, T ], g̈k ∈ L2[0, T ]. Thus xm, ẋm ∈
C([0, T ];Vm), and ẍm ∈ L2(0, T ;Vm).

To conclude that xm is an approximate solution of the problem (3.1)-(3.2)
in the sense of Definition 3.2, it is enough to establish that

(3.17) 〈ẍm + µAẋm + κẋm + αAxm − βBxm − γGxm, wk〉 = 〈P ∗
mf, wk〉

is satisfied for any k ∈ N. For 1 ≤ k ≤ m, equation (3.17) is the same as (3.16),
which is satisfied by the construction of xm. For k > m, the left side of (3.17)
becomes 0, and the right side is also 0, because 〈P ∗

mf, wk〉 = 〈f, Pmwk〉 = 0 for
such k. The uniqueness of the approximate solutions follows from Lemma 3.5.
Therefore we conclude that xm is the only approximate solution of (3.1)-(3.2),
i.e., xm = ym.

By Lemma 3.4, the approximate solutions ym remain in the same bounded
ball in L∞(0, T ;V ), and their derivatives ẏm remain in a bounded ball of
L∞(0, T ;H) for all m ∈ N. Furthermore, ẏm stay within a bounded ball in
L2(0, T ;V ). Let us show that ÿm are also staying within a bounded ball for all
m.

By Lemmas 2.1, 2.4, and using the continuous embedding of V ⊂ H , for
each w ∈ V we have

|〈ÿm, w〉| ≤ µ|〈Aẏm, w〉|+ |κ| |(ẏm, w)|+ α |〈Aym, w〉|+ β |(Bym, w)|

+ γ |(Gym, w)| + |〈P ∗
mf, w〉|

≤ c(‖ẏm‖+ |ẏm|+ ‖ym‖+ ‖ym‖+ ‖ym‖3 + ‖f‖V ′) ‖w‖.

Thus

‖ÿm‖V ′ ≤ c(‖ẏm‖+ |ẏm|+ ‖ym‖+ ‖ym‖3 + ‖f‖V ′).

Together with already established bounds for ym and ẏm, it concludes the proof
that ym remains within the same bounded ball in Wr[0, T ] for all m ∈ N.

Since Wr[0, T ] is a reflexive space, we can find a subsequence of ym (still
denoted by ym) such that it and the derivatives ẏm, ÿm are weakly convergent
in the spaces L2(0, T ;V ), L2(0, T ;H), and L2(0, T ;V ′) correspondingly. Since
the derivatives are taken in the distributional sense, it follows that there exists
y ∈ Wr[0, T ] such that

(3.18) ym ⇀ y, ẏm ⇀ ẏ, ÿm ⇀ ÿ

weakly in the corresponding spaces. Since sequence ym is bounded in L∞(0, T ;
V ), and sequence ẏm is bounded in L∞(0, T ;H), by Lemma 2.2 the weak
convergence (3.18) yields

(3.19) ym(t) ⇀ y(t) in V, ẏm(t) ⇀ ẏ(t) in H

weakly for all t ∈ [0, T ]. By the property of the weak convergence the limiting
function y is in Wr[0, T ].
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Now we are going to show that y satisfies the abstract problem (3.1)–(3.2),
i.e., it is a weak solution of the problem (1.2)–(1.5). By the definition of the
approximate solution

(3.20) ÿm + µAẏm + κẏm + αAym − βBym − γGym = P ∗
mf

in V ′, a.e. on [0, T ], and

(3.21) ym(0) = Pmu0, ẏ(0) = Pmv0.

Clearly, we can pass to the limit in V ′ for ÿm, κẏm, Bym, and P ∗
mf as

m → ∞. For the nonlinear operator G we have estimate (2.5)

‖Gym −Gy‖V ′ ≤ c(‖ym‖2 + ‖y‖2)|∇ym −∇y|.

The norms ‖ym‖ and ‖y‖ are bounded by (3.7). Now we conclude by Lemma 2.2
that |∇ym−∇y| → 0 in L2(0, T ) as m → ∞. Thus Gym → Gy in L2(0, T ;V ′),
which implies the validity of the passing to the limit.

As for µAẏm, and Aym, the linear operator A is continuous from V into V ′,
therefore it continuous from L2(0, T ;V ) into L2(0, T ;V ′). Thus it is weakly
continuous in these spaces, and the passage to the limit as m → ∞ in (3.20) is
justified.

Concerning the initial conditions (3.21), it was also argued in Lemma 2.2
that the weak convergence of ym to y in L2(0, T ;V ) implies that ym(t) ⇀ y(t)
weakly in V for any t ∈ [0, T ]. Since ym(0) = Pmu0 → u0 in V , we conclude
that y(0) = u0. A straightforward modification of Lemma 2.2 shows that
ẏm ⇀ ẏ weakly in H for any t ∈ [0, T ]. Therefore ẏ(0) = v0.

Assume that f ∈ L2(0, T ;H). For such an f , we have P ∗
mf = Pmf . Let

ym, y ∈ Wr[0, T ] be the solutions obtained in this theorem. Then we have
inequality
(3.22)

|ẏm(t)− ẏ(t)|2 + ‖ym(t)− y(t)‖2

≤ c

(

|Pmv0 − v0|
2+‖Pmu0 − u0‖

2+‖Pmu0 − u0‖
4+

∫ t

0

|Pmf(s)− f(s)|2 ds

)

for any t ∈ [0, T ], since it is (3.12) with ū0 = Pmu0, v̄0 = Pmv0, and f̄ = Pmf .
It implies the convergence of ym to y in C([0, T ];V ), and ẏm to ẏ in C([0, T ];H)
as m → ∞.

Finally, assume that f ∈ L2(0, T ;V ′). Approximate f by a sequence gn ∈
L2(0, T ;H), such that gn → f in L2(0, T ;V ′) as n → ∞. We have
(3.23)

‖ym(u0, v0, f)− y(u0, v0, f)‖V

≤ ‖ym(u0, v0, f)− ym(u0, v0, gn)‖V + ‖ym(u0, v0, gn)− y(u0, v0, gn)‖V

+ ‖y(u0, v0, gn)− y(u0, v0, f)‖V .

Let ǫ > 0. The first and the third terms in the right side of (3.23) are less than ǫ,
for sufficiently large n, by (3.13). The second term is less than ǫ, for sufficiently
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large m, by (3.22). The same argument goes for |ẏm(u0, v0, f) − ẏ(u0, v0, f)|.
This establishes the second claim of the theorem. �

4. Existence of solutions in the weak damping case µ = 0

An arch is said to have a weak damping, if µ = 0 in the system (1.2)–(1.5).
The goal of this section is to prove the existence of weak solutions for this
problem under the condition f ∈ H1(0, T ;V ′). Since less damping is present in
the system, the solutions are less regular. The main tool in the proof is Lemma
4.3. However, it is applicable only if f ∈ L2(0, T ;H). Therefore we are forced
to take a more indirect route. Let

W [0, T ] = {y : y ∈ L2(0, T ;V ), ẏ ∈ L2(0, T ;H), ÿ ∈ L2(0, T ;V ′)}.

Definition 4.1. Let u0 ∈ V, v0 ∈ H, T > 0, and f ∈ L2(0, T ;V ′). Function
y ∈ W [0, T ] is called a weak solution of the problem (1.2)–(1.5) in the weak
damping case, if y ∈ L∞(0, T ;V ), ẏ ∈ L∞(0, T ;H), equation

(4.1) ÿ + κẏ + αAy − βBy − γGy = f

is satisfied in V ′ a.e. on [0, T ], and the initial conditions

(4.2) y(0) = u0, ẏ(0) = v0

are satisfied in V and H correspondingly. We write y = y(u0, v0, f) to empha-
size the dependence of y on the initial conditions and f .

Definition 4.2. Let m ∈ N. Function ym is called an approximate so-
lution of the abstract problem (4.1)–(4.2), if ym ∈ W [0, T ] ∩ L∞(0, T ;V ),
ẏm ∈ L∞(0, T ;H), equation

(4.3) ÿm + κẏm + αAym − βBym − γGym = P ∗
mf

is satisfied in V ′ a.e. on [0, T ], and the initial conditions

(4.4) ym(0) = Pmu0, ẏm(0) = Pmv0

are satisfied in V and H correspondingly. The solution ym will be denoted by
ym(u0, v0, f), when it will be necessary to indicate its dependence on the initial
conditions and f .

The following crucial result is established in Lemma 2.4.1 of [11]:

Lemma 4.3. Let A : V → V ′ be defined by (2.1). Suppose that y ∈ L2(0, T ;V ),
ẏ ∈ L2(0, T ;H), and ÿ + Ay ∈ L2(0, T ;H). Then, after a modification on a

set of measure zero, y ∈ C([0, T ];V ), ẏ ∈ C([0, T ];H) and, in the sense of

distributions on (0, T ), one has

(4.5) (ÿ +Ay, ẏ) =
1

2

d

dt
{|ẏ|2 + ‖y‖2}.
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Suppose that y is a weak solution of (1.2)–(1.5) with µ = 0. Since A,B,G
are Lipschitz continuous on bounded subsets of V , and y ∈ L∞(0, T ;V ), ẏ ∈
L2(0, T ;H), it follows from Lemma 2.1 that Ay,By,Gy ∈ L2(0, T ;V ′), so
equation (4.1) makes sense. Functions y : [0, T ] → V , and ẏ : [0, T ] → H are
weakly continuous, so conditions (4.2) make sense as well.

The main result of this section is:

Theorem 4.4. Let u0 ∈ V, v0 ∈ H, T > 0, and f ∈ H1(0, T ;V ′). Then

(i) There exists a unique weak solution y ∈ W [0, T ] of the problem (1.2)–
(1.5) with µ = 0. Furthermore, y ∈ C([0, T ];V ), ẏ ∈ C([0, T ];H).

(ii) The solution satisfies

(4.6)

|ẏ(t)|2 + ‖y(t)‖2 ≤ c

(

|v0|
2 + ‖u0‖

2 + ‖u0‖
4 + ‖f(0)‖2V ′ +

∫ t

0

‖ḟ(s)‖2V ′ ds

)

for any t ∈ [0, T ].
(iii) Let ȳ = ȳ(ū0, v̄0, f̄) be the weak solution for the initial conditions ū0 ∈

V, v̄0 ∈ H, and f̄ ∈ H1(0, T ;V ′). Then the difference y − ȳ satisfies

the inequality

(4.7)

‖ẏ(t)− ˙̄y(t)|2 + ‖y(t)− ȳ(t)‖2

≤ c
(

|v0 − v̄0|
2 + ‖u0 − ū0‖

2 + ‖u0 − ū0‖
4 + ‖f(0)− f̄(0)‖2V ′

+

∫ t

0

‖ḟ(s)− ˙̄f(s)‖2V ′ ds
)

for any t ∈ [0, T ].
(iv) If ym is an approximate solution, then ym → y in C([0, T ];V ), and

ẏm → ẏ in C([0, T ];H) as m → ∞.

The proof of the theorem is provided below. It follows the proof in the
strong damping case with some modifications. In particular, Lemma 4.3 is
used instead of Lemma 3.3. The existence result was previously obtained by
us in [7] for f ∈ L2(0, T ;H).

Lemma 4.5. The solution of the problem (4.1)–(4.2) is unique.

Proof. Let y, ȳ be two solutions of (4.1)–(4.2) with the same initial conditions
and f . Their difference z satisfies

(4.8) z̈ + κż + αAz − βBz − γ(Gy −Gȳ) = 0,

with z(0) = 0, ż(0) = 0. By Lemma 2.1 in conjunction with z ∈ L∞(0, T ;V ),
ż ∈ L∞(0, T ;H) we have

(4.9) z̈ + αAz = −κż + βBz + γ(Gy −Gȳ) ∈ L2(0, T ;H).

Multiply both sides of (4.9) by ż. Then use z̈+αAz ∈ L2(0, T ;H) and Lemma
4.3 to rewrite the result as

(4.10)
1

2

d

dt

[

|ż|2 + α‖z‖2
]

= −κ|ż|2 + β(Bz, ż) + γ(Gy −Gȳ, ż).
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By the Lipschitz continuity ofG,B : V → H on bounded subsets of V according
to Lemma 2.1, we have

|(γGy − γGȳ, ż)| ≤ c(‖y‖2 + ‖ȳ‖2)‖z‖ |ż| ≤ c‖z‖ |ż|,

and

|(Bz, ż)| ≤ c‖z‖ |ż|.

The solutions and their derivatives are weakly continuous from [0, T ] into
V and H correspondingly, so their values are well-defined for any t, see [7].
Therefore we can integrate (4.10) on [0, t], and use the above inequalities to get

|ż(t)|2 + ‖z(t)‖2 ≤ c

(∫ t

0

(|ż|2 + ‖z‖2) ds

)

.

Gronwall’s inequality implies that z = 0, i.e., the uniqueness of the solution. �

The following estimates are provided for completeness, as well as because
they are needed in subsequent sections.

Lemma 4.6. Suppose that u0 ∈ V, v0 ∈ H, T > 0, and f ∈ L2(0, T ;H). Let

y = y(u0, v0, f).

(i) Then

(4.11) |ẏ(t)|2 + ‖y(t)‖2 ≤ c

(

|v0|
2 + ‖u0‖

2 + ‖u0‖
4 +

∫ t

0

|f |2 ds

)

.

(ii) If ū0 ∈ V , v̄0 ∈ H, f̄ ∈ L2(0, T ;H), and ȳ(ū0, v̄0, f̄) is the correspond-

ing solution, then

(4.12)

| ˙̄y(t)− y(t)|2 + ‖ȳ(t)− y(t)‖2

≤ c

(

|v̄0 − v0|
2 + ‖ū0 − u0‖

2 + ‖ū0 − u0‖
4 +

∫ t

0

|f̄ − f |2 ds

)

.

Proof. We have

ÿ + αAy = −κẏ + βBy + γGy + f ∈ L2(0, T ;H).

Take the inner product of this equality with ẏ in H , and use Lemma 4.3 to
rewrite the result as

1

2

d

dt

[

|ẏ|2 + α‖y‖2
]

= −κ|ẏ|2 + β(By, ẏ) + γ(Gy, ẏ) + (f, ẏ).

Integrate it from 0 to t, and use |(f, ẏ)| ≤ |f ||ẏ|, as well as other such estimates
to get

|ẏ(t)|2+‖y(t)‖2 ≤ c

(

|v0|
2 + ‖u0‖

2 + ‖u0‖
4 +

∫ t

0

|f |2 ds+

∫ t

0

(|ẏ|2 + ‖y‖2) ds

)

.

The Gronwall’s inequality gives (4.11).
Estimate (4.12) is proved similarly, by applying this method to the difference

z = ȳ − y, as in the proof of Lemma 4.5. �
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Lemma 4.7. Fix m ∈ N. Let Vm = span{wk, k = 1, 2, . . . ,m}. Suppose that

u0 ∈ V, v0 ∈ H, T > 0, and f ∈ H1(0, T ;V ′). Then

(i) There exists a unique approximate solution ym of the problem (4.1)–
(4.2). This solution satisfies ym, ẏm ∈ C([0, T ];Vm), ÿm ∈ L2(0, T ;Vm).
Furthermore, for any t ∈ [0, T ]

(4.13)

|ẏm(t)|2+‖ym(t)‖2 ≤ c

(

|v0|
2 + ‖u0‖

2 + ‖u0‖
4 + ‖f(0)‖2V ′ +

∫ t

0

‖ḟ(s)‖2V ′ ds

)

,

where the constant c is independent of m. Also, there exists C =
C(u0, v0, f) independent of m, such that

(4.14) ‖ÿm‖L2(0,T ;V ′) ≤ C

for any m ∈ N.

(ii) Let ȳm = ȳm(ū0, v̄0, f̄) be the approximate solution for the initial con-

ditions ū0 ∈ V, v̄0 ∈ H, and f̄ ∈ H1(0, T ;V ′). Then the difference

ym − ȳm satisfies the inequality

(4.15)
|ẏm(t)− ˙̄ym(t)|2 + ‖ym(t)− ȳm(t)‖2

≤ c
(

|v0 − v̄0|
2 + ‖u0 − ū0)‖

2 + ‖f(0)− f̄(0)‖2V ′ +

∫ t

0

‖ḟ(s)− ˙̄f(s)‖2V ′ ds
)

.

Proof. The uniqueness of the approximate solution follows form Lemma 4.5,
since it is applicable to (4.3)–(4.4) with f replaced by P ∗

mf .
Now we construct an approximate solution xm with values in Vm as in The-

orem 3.6. Let

(4.16) xm(t) =

m
∑

j=1

gj,m(t)wj ,

where the expansion is over the eigenfunctions of A, and real-valued functions
gj := gj,m(t), j = 1, 2, . . . ,m are the solutions of the following system of m
equations

(4.17)
〈ẍm + κẋm + αAxm − βBxm − γGxm, wk〉 = 〈f, wk〉,

(xm(0), wk) = (Pmu0, wk), (ẋm(0), wk) = (Pmv0, wk),

where k = 1, 2, . . . ,m. Here we used 〈P ∗
mf, wk〉 = 〈f, Pmwk〉 = 〈f, wk〉 for such

k.
The solution xm of this system of ODEs satisfies xm, ẋm ∈ C([0, T ];Vm),

ẍm ∈ L2(0, T ;V ′). The uniqueness of the approximate solutions implies that
ym = xm.

The next step is to obtain estimate (4.13). Multiply (4.3) by ẏm, and rewrite
the result in the form

(4.18)
1

2

d

dt

[

|ẏm|2 + α‖ym‖2 +
γ

2
|∇ym|4

]

= −κ|ẏm|2 + β(∇ym, ẏm) + 〈f, ẏm〉.
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Integrate (4.18) from 0 to t to get

|ẏm|2 + α‖ym‖2 +
γ

2
|∇ym|4 = |v0|

2 + α‖u0‖
2 +

γ

2
|∇u0|

4

− 2κ

∫ t

0

|ẏm|2 ds+ 2β

∫ t

0

(∇ym, ẏm) ds+ 2

∫ t

0

〈f, ẏm〉 ds

≤ |v0|
2 + α‖u0‖

2 +
γ

2
|∇u0|

4 + 2|κ|

∫ t

0

|ẏm|2 ds+ 2|β|c

∫ t

0

‖ym‖ |ẏm| ds

+ 2

∣

∣

∣

∣

∫ t

0

〈f, ẏm〉 ds

∣

∣

∣

∣

.

The last integral can be estimated using the integration by parts formula
established in Lemma 2.3 like (3.11) with y = ym ∈ C1([0, T ];Vm). Hence

|ẏm|2 + ‖ym‖2 ≤ c(|v0|
2 + ‖u0‖

2 + |∇u0|
4 + ‖f(0)‖2V ′)

≤ c

(∫ t

0

‖ḟ‖2V ′ds+

∫ t

0

(|ẏm|2 + ‖ym‖2)ds

)

.

Now |∇u0| ≤ c‖u0‖, and Gronwall’s inequality gives (4.13). Here the constant
c is independent of m, but is dependent on T .

Let us prove inequality (4.14). By Lemmas 2.1, 2.4, and using the continuous
imbedding of V ⊂ H , we have for each w ∈ V

|〈ÿm, w〉| ≤ |κ| |(ẏm, w)| + α |〈Aym, w〉| + β |(Bym, w)|

+ γ |(Gym, w)|+ |〈P ∗
mf, w〉|

≤ c(|ẏm| ‖w‖+ ‖ym‖ ‖w‖+ ‖ym‖ ‖w‖+ ‖ym‖3 ‖w‖+ ‖f‖V ′ ‖w‖).

Thus

‖ÿm‖V ′ ≤ c(|ẏm|+ ‖ym‖+ ‖ym‖3 + ‖f‖V ′)

and the result follows.
Finally, let us show (4.15). The difference zm = ym − ȳm satisfies

(4.19) z̈m + κżm + αAzm − βBzm − γGym + γGȳm = P ∗
m(f − f̄)

in V ′. Multiply (4.19) by żm ∈ V to get

(4.20)

1

2

d

dt

[

|żm|2 + α‖zm‖2
]

= − κ|żm|2 + β(Bzm, żm)

+ γ(Gym −Gȳm, żm) + 〈P ∗
m(f − f̄), żm〉.

By the Lipschitz continuity of G,B : V → H on bounded subsets of V , accord-
ing to Lemma 2.1, and (4.13), we have

|(γGym − γGȳm, żm)| ≤ c(‖ym‖2 + ‖ȳm‖2)‖zm‖|żm| ≤ c‖zm‖ |żm|

and

|(Bzm, żm)| ≤ c‖zm‖ |żm|,
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where c is independent ofm. Similarly to the estimate that used the integration
by parts formula in the previous part

2

∣

∣

∣

∣

∫ t

0

〈P ∗
m(f − f̄), żm〉 ds

∣

∣

∣

∣

≤
α

2
‖zm(t)‖2 +

(

4

α
+ 1

)

‖f(0)− f̄(0)‖2V ′

+

(

4

α
t+ 1

)
∫ t

0

‖ḟ − ˙̄f‖2V ′ ds+

∫ t

0

‖zm‖2 ds.

Integrate (4.20) over [0, t], and apply the above three inequalities to get

|żm|2 + ‖zm‖2

≤ c(|v0 − v̄0|
2 + ‖v0 − v̄0‖

2)

+ c

(

‖f(0)− f̄(0)‖2V ′ +

∫ t

0

‖ḟ − ˙̄f‖2V ′ ds+

∫ t

0

(|żm|2 + ‖zm‖2) ds

)

.

Then Gronwall’s inequality gives (4.15). �

Proof Theorem 4.4. The uniqueness of the weak solutions has already been
proved in Lemma 4.5. For the existence, let ym, m ∈ N be the sequence of
the approximate solutions. By Lemma 4.7 this sequence is bounded in W [0, T ].
Since W [0, T ] is a reflexive space, we can find a subsequence of ym (still denoted
by ym) such that it and the derivatives ẏm, ÿm are weakly convergent in the
spaces L2(0, T ;V ), L2(0, T ;H), and L2(0, T ;V ′) correspondingly. Since the
derivatives are taken in the distributional sense, it follows that there exists
y ∈ W [0, T ] such that

(4.21) ym ⇀ y, ẏm ⇀ ẏ, ÿm ⇀ ÿ

weakly in the corresponding spaces. Since sequence ym is bounded in L∞(0, T ;
V ), and sequence ẏm is bounded in L∞(0, T ;H), by Lemma 2.2 the weak
convergence (4.21) yields

(4.22) ym(t) ⇀ y(t) in V, ẏm(t) ⇀ ẏ(t) in H

weakly for all t ∈ [0, T ]. By the property of the weak convergence

(4.23) ‖y(t)‖ ≤ lim inf
m→∞

‖ym(t)‖, |ẏ(t)| ≤ lim inf
m→∞

|ẏm(t)|.

Therefore inequality (4.6) follows from (4.13) by taking the limit as m → ∞.
Now we are going to show that y satisfies the abstract problem (4.1)–(4.2),

i.e., it is a weak solution of the problem (1.2)–(1.5). By the definition of the
approximate solution

(4.24) ÿm + κẏm + αAym − βBym − γGym = P ∗
mf

in V ′, a.e. on [0, T ], and

(4.25) ym(0) = Pmu0, ẏ(0) = Pmv0.
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Clearly, we can pass to the limit in V ′ for ÿm, κẏm, Aym, Bym, and P ∗
mf as

m → ∞. For the nonlinear operator G we have estimate (2.5)

‖Gym −Gy‖V ′ ≤ c(‖ym‖2 + ‖y‖2)|∇ym −∇y|.

The norms ‖ym‖ and ‖y‖ are bounded by estimates (4.13) and (4.6). Since ym
and y satisfy all the conditions of Lemma 2.2, we conclude that |∇ym−∇y| → 0
in L2(0, T ) as m → ∞. Thus Gym → Gy in L2(0, T ;V ′), and the passage to
the limit as m → ∞ in (4.24) is justified.

Concerning the initial conditions (4.25), it was also argued in Lemma 2.2
that the weak convergence of ym to y in L2(0, T ;V ) implies that ym(t) ⇀ y(t)
weakly in V for any t ∈ [0, T ]. Since ym(0) = Pmu0 → u0 in V , we conclude
that y(0) = u0. A straightforward modification of Lemma 2.2 shows that
ẏm ⇀ ẏ weakly in H for any t ∈ [0, T ]. Therefore ẏ(0) = v0.

Inequality (4.7) follows from (4.15) by passing to the limit as m → ∞, like
in (4.22). Also note that since the weak solution y is unique, then the entire
sequence {ym}∞m=1 of the approximate solutions is weakly convergent to y, and
not just its subsequence.

The only parts of the Theorem that still need a proof are the assertions
about the convergence of the approximate solutions, and the continuity of the
solutions. We proceed as at the end of the proof for the strong damping case.

Approximate f by a sequence gn ∈ L2(0, T ;H), such that gn → f in

L2(0, T ;V ′), and ġn → ḟ in L2(0, T ;V ′) as n → ∞. We have
(4.26)

‖ym(u0, v0, f)− y(u0, v0, f)‖V

≤ ‖ym(u0, v0, f)− ym(u0, v0, gn)‖V

+ ‖ym(u0, v0, gn)− y(u0, v0, gn)‖V + ‖y(u0, v0, gn)− y(u0, v0, f)‖V .

Let ǫ > 0. The first and the third terms in the right side of (4.26) are less
than ǫ, for sufficiently large n, by (4.7). The second term is less than ǫ, for
sufficiently largem, by Lemma 4.8. The same argument goes for |ẏm(u0, v0, f)−
ẏ(u0, v0, f)|. Since the ym ∈ C([0, T ];V ), and ẏm ∈ C([0, T ];H), it implies that
y ∈ C([0, T ];V ), and ẏ ∈ C([0, T ];H). �

Lemma 4.8. Let µ = 0. Suppose that u0 ∈ V, v0 ∈ H, T > 0, and g ∈
L2(0, T ;H). Let y be the weak solution of the problem (1.2)–(1.5), and ym be

its approximate solution. Then

(4.27)
|ẏm(t)− ẏ(t)|2 + ‖ym(t)− y(t)‖2

≤ c

(

|Pmv0 − v0|
2+‖Pmu0 − u0‖

2+‖Pmu0 − u0‖
4+

∫ t

0

|Pmg(s)− g(s)|2 ds

)

for any t ∈ [0, T ],

Proof. Use (4.12) with f = g, f̄ = Pmg, as well as ū0 = Pmu0, v̄0 = Pmv0. �
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5. Vanishing strong damping µ → 0

Fix the initial conditions u0, v0 and the function f in equations (3.1), and
(4.1) describing the strong and the weak damping cases. Let the corresponding
solutions be y(µ) and y. The goal of this section is to show that y(µ) → y as
µ → 0. Thus the solution in the weak damping case is the limit of the strong
damping solutions, when the strong damping is vanishing.

A comparison of the equations (3.1) and (4.1) shows that their difference
is the µAẏ(µ) term. To make it approach zero, as µ → 0, one has to assure
that the set ‖ẏ(µ)‖V is either bounded, or its bound does not grow faster than
1/µ. However, estimate (3.7) shows that this is not the case. This forces us to
consider solutions for some special choices of the initial conditions and f .

The operator A : V → V ′ was defined by 〈Au, v〉 =
∫

Ω ∆u∆v dx, u, v ∈ V .
Define the domain of A by D(A) = {v ∈ V : |Av| < ∞}. Let the norm of
v ∈ D(A) be given by |Av|. Then D(A) is a Hilbert space, and A : D(A) → H
is an isometry, see [11].

Since D(A) is densely and compactly embedded in V , we can consider the
Gelfand triple D(A) ⊂ V ⊂ H , where V is identified with its dual V ′, and
[D(A)]′ with H , see Section 2.4.2 of [11] for details. Within the framework of
this new triple, the results for the solutions y(µ) and y obtained in Sections 3
and 4 can be restated as follows.

Lemma 5.1. Suppose that f ∈ L2(0, T ;V ), u0 ∈ D(A), and v0 ∈ V . Then

both y(µ) and y satisfy y(µ) ∈ C([0, T ];D(A)), ẏ(µ) ∈ C([0, T ];V ), and

(5.1) |Ay(µ)(t)|2 + ‖ẏ(µ)(t)‖2 ≤ c
(

‖v0‖
2 + |Au0|

2 + |Au0|
4 +

∫ t

0

‖f(s)‖2 ds
)

for any 0 ≤ t ≤ T . That is, inequality (5.1) is satisfied for any µ ≥ 0 for the

same c > 0.

Lemma 5.2. Suppose that f ∈ L2(0, T ;V ), u0 ∈ D(A), and v0 ∈ V . Then

y(µ) → y in C([0, T ];V ), and ẏ(µ) → ẏ in C([0, T ];H) as µ → 0.

Proof. Let z = y(µ) − y. Subtract (4.1) from (3.1) to obtain

(5.2) z̈ + κż + αAz − βBz − γ(Gy(µ) −Gy) = −µAẏ(µ),

with z(0) = 0, ż(0) = 0.
By Lemma 5.1, ż ∈ L2(0, T ;V ). Take the inner product of (5.2) and ż in

H , and then use Lemma 3.3 to obtain

1

2

d

dt
{|ż|2 + α‖z‖2} = −µ〈Aẏ(µ), ż〉 − κ|ż|2 + β(∆z, ż) + γ(Gy(µ) −Gy, ż).

Integrate this equality from 0 to t, and use the Lipschitz continuity of G on
bounded subsets of V , as shown in (2.4), to get

(5.3) |ż|2 + α‖z‖2 ≤ c

(

µ‖Aẏ(µ)‖V ′ +

∫ t

0

(

|ż|2 + ‖z‖2
)

ds

)

.
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Let w ∈ V with ‖w‖ ≤ 1. From the definition of A

|〈Aẏ(µ), w〉| ≤ ‖ẏ(µ)‖ ‖w‖ ≤ ‖ẏ(µ)‖ implies ‖Aẏ(µ)‖V ′ ≤ ‖ẏ(µ)‖.

From (5.1) we get ‖ẏ(µ)(t)‖ ≤ c, 0 ≤ t ≤ T. Finally, Gronwall’s inequality
applied to (5.3) gives

|ż|2 + α‖z‖2 ≤ cµ‖Aẏ(µ)‖V ′ ≤ cµ.

The continuity follows by letting µ → 0. �

The main result of this section is:

Theorem 5.3. Let y(µ), µ > 0, and y(0) be the solutions of the problem (1.2)–
(1.5) in the strong and the weak damping cases, correspondingly. Then the

mappings µ → y(µ) from [0,∞) into C([0, T ];V ), and µ → ẏ(µ) from [0,∞)
into C([0, T ];H), are continuous.

Proof. The difficult case is µ → 0. For simplicity, we will break it into two
steps.

Assume f ∈ L2(0, T ;V ), u0 ∈ V, v0 ∈ H . Choose sequences un ∈ D(A),
such that in un → u0 in V , and vn ∈ V , such that vn → v0 in H as n → ∞.
For example, we can let un = Pnu0, and vn = Pnv0, since the eigenfunctions
wk ∈ D(A) for any k ∈ N. Then
(5.4)

‖y(µ)(u0, v0, f)− y(0)(u0, v0, f)‖V

≤ ‖y(µ)(u0, v0, f)− y(µ)(un, vn, f)‖V + ‖y(µ)(un, vn, f)− y(0)(un, vn, f)‖V

+ ‖y(0)(un, vn, f)− y(0)(u0, v0, f)‖V .

Let ǫ > 0. The first and the third terms in the right side of (5.4) are less than
ǫ, for sufficiently large n, by (3.12), and (4.12). The second term is less than ǫ,
for sufficiently small µ, by Lemma 5.2. Thus we have the required convergence
for f ∈ L2(0, T ;V ), and any u0 ∈ V, v0 ∈ H .

Now assume that f, ḟ ∈ L2(0, T ;V ′). Approximate f by functions gn ∈

L2(0, T ;V ), such that gn → f , and ġn → ḟ in L2(0, T ;V ′) as n → ∞. Then
(5.5)

‖y(µ)(u0, v0, f)− y(0)(u0, v0, f)‖V

≤ ‖y(µ)(u0, v0, f)− y(µ)(u0, v0, gn)‖V + ‖y(µ)(u0, v0, gn)− y(0)(u0, v0, gn)‖V

+ ‖y(0)(u0, v0, gn)− y(0)(u0, v0, f)‖V .

Let ǫ > 0. The first and the third terms in the right side of (5.5) are less than
ǫ, for sufficiently large n, by (3.14), and (4.12). The second term is less than
ǫ, for sufficiently small µ, as was shown in (5.4).

A similar argument goes for the derivatives ẏ(µ), and ẏ(0). This proves the
result for µ → 0.

If µ → ν > 0, then estimate (3.7) shows that the derivatives ẏ(µ) are uni-
formly bounded in L2(0, T ;V ) for µ on any interval in R

+, bounded away from
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zero. Then the required continuity results are obtained in a straightforward
manner, as in the proof of Lemma 5.2. �

6. Car motion on a bridge

We model a long bridge as an arch over the interval Ω = (0, π). Its shape
y(x, t), x ∈ Ω, t ≥ 0 is required to satisfy the one-dimensional arch equation
(1.2). For definiteness, let us assume that it satisfies the hinged boundary
conditions y(0, t) = y′′(0, t) = 0, and y(π, t) = y′′(π, t) = 0. The proper
variational setting for this problem is described in Definition 3.1, with V =
H1

0 (Ω) ∩H2(Ω).
We are interested in the dynamics of the bridge when cars move across it.

The cars are modeled by concentrated loads represented by a forcing function
f(t) ∈ V ′ for t ≥ 0. For simplicity we assume that all cars have the same mass.

Since any w ∈ V can be considered to be continuous on Ω, let us define a
linear functional δh : V → R, h ∈ R by

〈δh, w〉 =

{

w(h), h ∈ Ω,
0, h 6∈ Ω.

For h ∈ Ω, we have |〈δh, w〉| ≤ |w(h)| ≤ c‖w‖, so we conclude that δh ∈ V ′.
For convenience, we will also use the more common notation δh = δ(x− h).

Let a car move across the bridge with the velocity v > 0. This motion is
modeled by the forcing function f(t) = δ(x−vt). Of course, f(t) = 0 for t ≤ 0,
and t ≥ π/v. As we have just shown, f(t) ∈ V ′ for t ≥ 0.

Let t1, t2 ∈ Ω. Then for any w ∈ V

|〈δ(x− vt1)− δ(x − vt2), w〉| = |w(vt1)− w(vt2)| ≤

∫ vt2

vt1

|w′(s)| ds

≤ cv|t1 − t2| ‖w‖V .

Thus f ∈ Cb(R;V
′). By Theorems 3.6 and 4.4, the solutions for the bridge

motion y(x, t) exist on any interval [0, T ] in the weak and the strong damping
cases.
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