• 제목/요약/키워드: regular semigroup.

검색결과 72건 처리시간 0.026초

G-REGULAR SEMIGROUPS

  • Sohn, Mun-Gu;Kim, Ju-Pil
    • 대한수학회보
    • /
    • 제25권2호
    • /
    • pp.203-209
    • /
    • 1988
  • In this paper, we define a g-regular semigroup which is a generalization of a regular semigroup. And we want to find some properties of g-regular semigroup. G-regular semigroups contains the variety of all regular semigroup and the variety of all periodic semigroup. If a is an element of a semigroup S, the smallest left ideal containing a is Sa.cup.{a}, which we may conveniently write as $S^{I}$a, and which we shall call the principal left ideal generated by a. An equivalence relation l on S is then defined by the rule alb if and only if a and b generate the same principal left ideal, i.e. if and only if $S^{I}$a= $S^{I}$b. Similarly, we can define the relation R. The equivalence relation D is R.L and the principal two sided ideal generated by an element a of S is $S^{1}$a $S^{1}$. We write aqb if $S^{1}$a $S^{1}$= $S^{1}$b $S^{1}$, i.e. if there exist x,y,u,v in $S^{1}$ for which xay=b, ubv=a. It is immediate that D.contnd.q. A semigroup S is called periodic if all its elements are of finite order. A finite semigroup is necessarily periodic semigroup. It is well known that in a periodic semigroup, D=q. An element a of a semigroup S is called regular if there exists x in S such that axa=a. The semigroup S is called regular if all its elements are regular. The following is the property of D-classes of regular semigroup.group.

  • PDF

Fuzzy ideal graphs of a semigroup

  • Rao, Marapureddy Murali Krishna
    • Annals of Fuzzy Mathematics and Informatics
    • /
    • 제16권3호
    • /
    • pp.363-371
    • /
    • 2018
  • The main objective of this paper is to connect fuzzy theory, graph theory and fuzzy graph theory with algebraic structure. We introduce the notion of fuzzy graph of semigroup, the notion of fuzzy ideal graph of semigroup as a generalization of fuzzy ideal of semigroup, intuitionistic fuzzy ideal of semigroup, fuzzy graph and graph, the notion of isomorphism of fuzzy graphs of semigroups and regular fuzzy graph of semigroup and we study some of their properties.

THE STRUCTURE OF ALMOST REGULAR SEMIGROUPS

  • Chae, Younki;Lim, Yongdo
    • 대한수학회보
    • /
    • 제31권2호
    • /
    • pp.187-192
    • /
    • 1994
  • The author extended the small properties of topological semilattices to that of regular semigroups [3]. In this paper, it could be shown that a semigroup S is almost regular if and only if over bar RL = over bar R.cap.L for every right ideal R and every left ideal L of S. Moreover, it has shown that the Bohr compactification of an almost regular semigroup is regular. Throughout, a semigroup will mean a topological semigroup which is a Hausdorff space together with a continuous associative multiplication. For a semigroup S, we denote E(S) by the set of all idempotents of S. An element x of a semigroup S is called regular if and only if x .mem. xSx. A semigroup S is termed regular if every element of S is regular. If x .mem. S is regular, then there exists an element y .mem S such that x xyx and y = yxy (y is called an inverse of x) If y is an inverse of x, then xy and yx are both idempotents but are not always equal. A semigroup S is termed recurrent( or almost pointwise periodic) at x .mem. S if and only if for any open set U about x, there is an integer p > 1 such that x$^{p}$ .mem.U.S is said to be recurrent (or almost periodic) if and only if S is recurrent at every x .mem. S. It is known that if x .mem. S is recurrent and .GAMMA.(x)=over bar {x,x$^{2}$,..,} is compact, then .GAMMA.(x) is a subgroup of S and hence x is a regular element of S.

  • PDF

On Ordered Ternary Semigroups

  • Daddi, Vanita Rohit;Pawar, Yashashree Shivajirao
    • Kyungpook Mathematical Journal
    • /
    • 제52권4호
    • /
    • pp.375-381
    • /
    • 2012
  • We introduce the concepts of ordered quasi-ideals, ordered bi-ideals in an ordered ternary semigroup and study their properties. Also regular ordered ternary semigroup is defined and several ideal-theoretical characterizations of the regular ordered ternary semigroups are furnished.

Intuitionistic Fuzzy Bi-ideals of Ordered Semigroups

  • Jun, Young Bae
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.527-537
    • /
    • 2005
  • The intuitionistic fuzzification of the notion of a bi-ideal in ordered semigroups is considered. In terms of intuitionistic fuzzy set, conditions for an ordered semigroup to be completely regular is provided. Characterizations of intuitionistic fuzzy bi-ideals in ordered semigroups are given. Using a collection of bi-ideals with additional conditions, an intuitionistic fuzzy bi-ideal is constructed. Natural equivalence relations on the set of all intuitionistic fuzzy bi-ideals of an ordered semigroup are investigated.

  • PDF

Structure of the Double Four-spiral Semigroup

  • CHANDRASEKARAN, V.M.;LOGANATHAN, M.
    • Kyungpook Mathematical Journal
    • /
    • 제43권4호
    • /
    • pp.503-512
    • /
    • 2003
  • In this paper, we first give an alternative description of the fundamental orthodox semigroup $\bar{A}$(1, 2). We then use this to represent the double four-spiral semigroup $DSp_4$ as a regular Rees matrix semigroup over $\bar{A}$(1, 2).

  • PDF

ON STRONGLY REGULAR NEAR-SUBTRACTION SEMIGROUPS

  • Dheena, P.;Kumar, G. Satheesh
    • 대한수학회논문집
    • /
    • 제22권3호
    • /
    • pp.323-330
    • /
    • 2007
  • In this paper we introduce the notion of strongly regular near-subtraction semigroups (right). We have shown that a near-subtraction semigroup X is strongly regular if and only if it is regular and without non zero nilpotent elements. We have also shown that in a strongly regular near-subtraction semigroup X, the following holds: (i) Xa is an ideal for every a $\in$ X (ii) If P is a prime ideal of X, then there exists no proper k-ideal M such that P $\subset$ M (iii) Every ideal I of X fulfills $I=I^2$.