• Title/Summary/Keyword: regular elements

Search Result 255, Processing Time 0.026 seconds

The Development of Incompatible Finite Elements for Plane Stress/Strain Using Multivariable Variational formulation (다변수 변분해법에 의한 비적합 4절점 사각형 평면응력 및 평면변형률 요소의 개발)

  • 주상백;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2871-2882
    • /
    • 1994
  • Two kinds of 4-node plane stress/strain finite elements are presented in this work. They are derived from the modified Hellinger-Reissner variational principle so as to employ the internal incompatible displacement and independent stress fields, or the incompatible displacement and strain fields. The introduced incompatible functions are selected to satisfy the constant strain condition. The elements are evaluated on several problems of bending and material incompressibility with regular and distorted elements. The results show that the new elements perform excellently in the calculation of deformation and stresses.

Development of finite 'crack' element (균열 유한 요소의 개발)

  • 조영삼;전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.381-388
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor K/sub I/ is demonstrated and the crack propagation in a plate is simulated.

  • PDF

Incompatible Three-Dimensional Hexagonal Finite Elements by Multivariable Method (다변수 변분해법에 의한 비적합 8절점 육면체 요소)

  • Ju, Sang-Baek;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2078-2086
    • /
    • 1996
  • This paper introduces two three-dimensional eight-node hexagonal elements obtained by using multivariable variational mehtod. Both of them are based on the modified hellinger-reissner principle to employ incompatible displacements and assumed stresses of assumed strains. The internal functions of element are introduced to as element formulation through two different methods : the first one uses the functions determined directly from the element boundary condition of the incompatible displacements ; while the second, being a kind of B-bar mehtod, employs the modification technique of strain-displacement matrix to pass the patch test. The elements are evaluated on the selective problems of bending and material incompressibility with regular and distorted meshes. The results show that the new elements perform with good accuracy in both of deformation and stress calculation and they are insensitive to distorted geometry of element.

Incompatible finite Elements for Axisymmetric Structure with Assumed Strains (가상 변형률을 갖는 비적합 4절점 축대칭 요소)

  • 주상백;신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.486-494
    • /
    • 1995
  • This paper introduces two kinds of new four-node quadrilateral axisymmetric elements with independently-assumed strains. They are formulated by the modified Hellinger-Reissner principle so as to employ incompatible displacements and assumed strains. In one of the present elements, the strains from incompatible displacements are corrected to pass the constant strain patch test. The other contains incompatible functions that are obtained from the element boundary condition. The elements are evaluated on the several problems of bending and material incompressibility with regular and distorted meshes. The results show that the new element performs excellently in deformation and stress calculation.

A Hydroelastic Response Analysis of Ships with Forward Speed in Regular Waves (규칙파중을 항행하는 선박의 유탄성응답해석)

  • Lee, S.C.;Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.48-55
    • /
    • 2010
  • When a large ship is advancing in waves, ship undergoes the hydroelastic response, which has influences on structural stability and the fatigue destruction etc. of the ship. Therefore, to predict accurate hydroelastic response, it is necessary to analyze hydroelastic response including fluid-structure interaction. In this research, a ship is divided into many hull elements to calculate the fluid forces and wave exciting forces on each elements using three-dimensional source distribution method. The calculated fluid forces and wave exciting forces are assigned to nodes of hull elements. The neighbor nodes are connected with elastic beam elements. We analyzed hydroelastic responses, and those are formulated by using finite element method. Particularly, to estimate the influence of forward speed on the hydroelastic responses, we use two different methods : Full Hull Rotation Method(FHRM) and Sectional Hull Rotation Method(SHRM).

Finite 'crack' element method (균열 유한 요소법)

  • Cho, Young-Sam;Jun, Suk-Ky;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.551-556
    • /
    • 2004
  • We propose a 2D 'crack' element for the simulation of propagating crack with minimal remeshing. A regular finite element containing the crack tip is replaced with this novel crack element, while the elements which the crack has passed are split into two transition elements. Singular elements can easily be implemented into this crack element to represent the crack-tip singularity without enrichment. Both crack element and transition element proposed in our formulation are mapped from corresponding master elements which are commonly built using the moving least-square (MLS) approximation only in the natural coordinate. In numerical examples, the accuracy of stress intensity factor $K_I$ is demonstrated and the crack propagation in a plate is simulated.

  • PDF

Bachelardienne Interpretation of the Architectural Image of Coop Himmelb(l)au - Focusing Busan Cinema Center analyzed by four-elements metaphor - (쿱 힘멜블라우 건축 이미지의 바슐라르적 해석 - 4원소론을 적용한 부산 영화의전당 분석을 중심으로 -)

  • Kim, In-Sung
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.85-94
    • /
    • 2018
  • This study tries to connect the 'four-elements metaphor' of Bachelard with architectural Images of Coop Himmelblau. Two basic terms of 'phenomenology of imagination' and 'material image' are explored firstly to understand the meaning and value of Bachelardienne four-elements in architectural discourse. The material images of air, fire, water, and clay are applied to the analysis of architectural experience of Busan Cinema Center(BCC) which is selected among works of Himmelblau by reason of its integrity of the four-elements' images. After elaborate Bachelardienne description of the images of BCC, the study examines whole Himmelblau's works since 1968 chronologically from the perspective of the four-elements' architectural images which are found in the analysis of BCC. The study of BCC could discover the images of air in two roofs, the images of fire in Double cone, the images of water in outdoor cinema, Dureraum square, flying brides, and the images of clay in Cinemountain and BIFF Hill. The chronological study found that Himmelblau had started their projects with the images of air in 1968 and tried the fire from 1978, and their regular examination of water and clay images had begun in mid 90's. After 2000, they could show a certain harmony of the four elements in their works.

Interfacial Strain Distribution of a Unidirectional Composite with Randomly Distributed Fibers (불규칙 섬유배열을 가진 일방향 복합재료의 경계면 변형률 분포 해석)

  • Ha Sung-Kyu;Jin Kyo-Kook;Oh Je-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.260-268
    • /
    • 2006
  • The micromechanical approach was used to investigate the interfacial strain distributions of a unidirectional composite under transverse loading in which fibers were usually found to be randomly packed. Representative volume elements (RVE) for the analysis were composed of both regular fiber arrays such as a square array and a hexagonal array, and a random fiber array. The finite element analysis was performed to analyze the normal, tangential and shear strains at the interface. Due to the periodic characteristics of the strain distributions at the interface, the Fourier series approximation with proper coefficients was utilized to evaluate the strain distributions at the interface for the regular and random fiber arrays with respect to fiber volume fractions. From the analysis, it was found that the random arrangement of fibers had a significant influence on the strain distribution at the interface, and the strain distribution in the regular fiber arrays was one of special cases of that in the random fiber array.

ON QB-IDEALS OF EXCHANGE RINGS

  • Chen, Huanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.873-884
    • /
    • 2009
  • We characterize QB-ideals of exchange rings by means of quasi-invertible elements and annihilators. Further, we prove that every $2\times2$ matrix over such ideals of a regular ring admits a diagonal reduction by quasi-inverse matrices. Prime exchange QB-rings are studied as well.

Cell array multiplier in GF(p$^{m}$ ) using Current mode CMOS (전류모드 CMOS를 이용한 GF(P$^{m}$ )상의 셀 배열 승산기)

  • 최재석
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.102-109
    • /
    • 2001
  • In this paper, a new multiplication algorithm which describes the methods of constructing a multiplierover GF(p$^{m}$ ) was presented. For the multiplication of two elements in the finite field, the multiplication formula was derived. Multiplier structures which can be constructed by this formula were considered as well. For example, both GF(3) multiplication module and GF(3) addition module were realized by current-mode CMOS technology. By using these operation modules the basic cell used in GF(3$^{m}$ ) multiplier was realized and verified by SPICE simulation tool. Proposed multipliers consisted of regular interconnection of simple cells use regular cellular arrays. So they are simply expansible for the multiplication of two elements in the finite field increasing the degree m.

  • PDF