• Title/Summary/Keyword: regular convex set

Search Result 6, Processing Time 0.02 seconds

A LOWER BOUND FOR THE CONVEXITY NUMBER OF SOME GRAPHS

  • Kim, Byung-Kee
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.185-191
    • /
    • 2004
  • Given a connected graph G, we say that a set EC\;{\subseteq}\;V(G)$ is convex in G if, for every pair of vertices x, $y\;{\in}\;C$, the vertex set of every x - y geodesic in G is contained in C. The convexity number of G is the cardinality of a maximal proper convex set in G. In this paper, we show that every pair k, n of integers with $2\;{\leq}k\;{\leq}\;n\;-\;1$ is realizable as the convexity number and order, respectively, of some connected triangle-free graph, and give a lower bound for the convexity number of k-regular graphs of order n with n > k+1.

POLYNOMIAL GROWTH HARMONIC MAPS ON COMPLETE RIEMANNIAN MANIFOLDS

  • Lee, Yong-Hah
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.521-540
    • /
    • 2004
  • In this paper, we give a sharp estimate on the cardinality of the set generating the convex hull containing the image of harmonic maps with polynomial growth rate on a certain class of manifolds into a Cartan-Hadamard manifold with sectional curvature bounded by two negative constants. We also describe the asymptotic behavior of harmonic maps on a complete Riemannian manifold into a regular ball in terms of massive subsets, in the case when the space of bounded harmonic functions on the manifold is finite dimensional.

METRIZABILITY AND SUBMETRIZABILITY FOR POINT-OPEN, OPEN-POINT AND BI-POINT-OPEN TOPOLOGIES ON C(X, Y)

  • Barkha, Barkha;Prasannan, Azhuthil Raghavan
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.905-913
    • /
    • 2022
  • We characterize metrizability and submetrizability for point-open, open-point and bi-point-open topologies on C(X, Y), where C(X, Y) denotes the set of all continuous functions from space X to Y ; X is a completely regular space and Y is a locally convex space.

Delay-dependent Robust $H_{\infty}$ Filtering for Uncertain Descriptor Systems with Time-varying Delay (시변 시간지연을 가지는 불확실 특이시스템의 지연 종속 강인 $H_{\infty}$ 필터링)

  • Kim, Jong-Hae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1796-1801
    • /
    • 2009
  • This paper is concerned with the problem of delay-dependent robust $H_{\infty}$ filtering for uncertain descriptor systems with time-varying delay. The considering uncertainty is convex compact set of polytoic type. The purpose is the design of a linear filter such that the resulting filtering error descriptor system is regular, impulse-free, and asymptotically stable with $H_{\infty}$ norm bound. By establishing a finite sum inequality based on quadratic terms, a new delay-dependent bounded real lemma (BRL) for delayed descriptor systems is derived. Based on the derived BRL, a robust $H_{\infty}$ filter is designed in terms of linear matrix inequaltity (LMI). Numerical examples are given to illustrate the effectiveness of the proposed method.

STRONG CONVERGENCE OF COMPOSITE ITERATIVE METHODS FOR NONEXPANSIVE MAPPINGS

  • Jung, Jong-Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1151-1164
    • /
    • 2009
  • Let E be a reflexive Banach space with a weakly sequentially continuous duality mapping, C be a nonempty closed convex subset of E, f : C $\rightarrow$C a contractive mapping (or a weakly contractive mapping), and T : C $\rightarrow$ C a nonexpansive mapping with the fixed point set F(T) ${\neq}{\emptyset}$. Let {$x_n$} be generated by a new composite iterative scheme: $y_n={\lambda}_nf(x_n)+(1-{\lambda}_n)Tx_n$, $x_{n+1}=(1-{\beta}_n)y_n+{\beta}_nTy_n$, ($n{\geq}0$). It is proved that {$x_n$} converges strongly to a point in F(T), which is a solution of certain variational inequality provided the sequence {$\lambda_n$} $\subset$ (0, 1) satisfies $lim_{n{\rightarrow}{\infty}}{\lambda}_n$ = 0 and $\sum_{n=0}^{\infty}{\lambda}_n={\infty}$, {$\beta_n$} $\subset$ [0, a) for some 0 < a < 1 and the sequence {$x_n$} is asymptotically regular.