JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **23**, No. 3, September 2010

STRONGLY C-CONVEX FUNCTIONS AND ALMOST C-CONVEX FUNCTIONS ON PRECONVEXITY SPACES

WON KEUN MIN*

ABSTRACT. In this paper, we introduce the concepts of strongly cconvex(strongly c-concave) function, almost c-convex function on preconvex spaces. We investigate the relationships between such concepts and several types of preconvex sets.

1. Introduction

In [1], Guay introduced the concept of preconvexity spaces defined by a binary relation on the power set P(X) of a set X and investigated some properties. He showed that a preconvexity on a set yields a convexity space in the same manner as a proximity [3] yields a topological space.

The purpose of this paper is to introduce the concepts of strongly c-convex function and almost c-convex function on preconvex spaces. We show that every strongly c-convex function is c-convex and every c-convex function is almost c-convex. In particular, we investigate the relationships between such concepts and several types of preconvex sets.

DEFINITION 1.1 ([1]). Let X be a nonempty set. A binary relation σ on P(X) is called a preconvexity on X if the relation satisfies the following properties; we write $x\sigma A$ for $\{x\}\sigma A$:

(1) If $A \subseteq B$, then $A\sigma B$.

(2) If $A\sigma B$ and $B = \emptyset$, then $A = \emptyset$.

(3) If $A\sigma B$ and $b\sigma C$ for all $b \in B$, then $A\sigma C$.

(4) If $A\sigma B$ and $x \in A$, then $x\sigma B$.

The pair (X, σ) is called a preconvexity space.

In a preconvexity space (X, σ) , $G(A) = \{x \in X : x \sigma A\}$ is called the *convexity hull* of a subset A. A is called *convex* [1] if G(A) = A.

Received April 30, 2010; Accepted August 12, 2010.

²⁰¹⁰ Mathematics Subject Classification: Primary 52A01.

Key words and phrases: preconvexity, co-convex sets, convex sets, strongly c-convex, regular convex set, almost c-convex .

Won Keun Min

 $I_{\sigma}(A) = \{x \in A : x \not(X-A)\}$ (simply, I(A)) is called the *co-convexity* hull [2] of a subset A. A is called a *co-convex set* if I(A) = A.

THEOREM 1.2 ([2]). Let (X, σ) be a preconvexity space and $A \subseteq X$. Then A is a co-convex set iff A^c is a convex set.

THEOREM 1.3 ([1, 2]). For a preconvexity space (X, σ) , (1) $A\sigma B$ iff $A \subseteq G(B)$. (2) $A\sigma B$ iff $G(A)\sigma G(B)$. (3) $G(\emptyset) = \emptyset$; I(X) = X. (4) $I(A) \subseteq A \subseteq G(A)$ for all $A \subseteq X$. (5) If $A \subseteq B$, then $G(A) \subseteq G(B)$ and $I(A) \subseteq I(B)$. (6) G(G(A)) = G(A) and I(I(A)) = I(A) for $A \subseteq X$. (7) I(A) = X - G(X - A); G(A) = X - I(X - A).

2. Main results

DEFINITION 2.1. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f : (X, \sigma) \to (Y, \mu)$ is said to be *strongly c-convex* if $A\sigma B$ implies $f(A)\mu I_{\mu}(f(B))$.

REMARK 2.2. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be *c*-convex [1] if $A\sigma B$ implies $f(A)\mu f(B)$. Obviously we know that every strongly c-convex function is c-convex.

LEMMA 2.3 ([3]). Let (X, σ) be a preconvexity space. For all $A \subseteq X$, $G(A)\sigma A$.

THEOREM 2.4. Let $f : X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then the following things are equivalent:

(1) f is strongly c-convex. (2) $f(G_{\sigma}(A)) \subset G_{\mu}(I_{\mu}(f(A)))$ for all $A \subset X$. (3) $G_{\sigma}(f^{-1}(B)) \subset f^{-1}(G_{\mu}(I_{\mu}(B)))$ for all $B \subset Y$. (4) $f^{-1}(I_{\mu}(G_{\mu}(B))) \subset I_{\sigma}(f^{-1}(B))$ for all $B \subset Y$.

Proof. (1) \Rightarrow (2) For each $A \subset X$, since $G(A)\sigma A$ and f is strongly c-convex, we have that $f(G(A))\mu I_{\mu}(f(A))$. Thus from Theorem 1.3(1), it follows $f(G_{\sigma}(A)) \subset G_{\mu}(I_{\mu}(f(A)))$.

(2) \Rightarrow (1) Let $A\sigma B$ for $A, B \subset X$. Then $A \subset G_{\sigma}(A) \subset G_{\sigma}(B)$. From (2), it follows $f(A) \subset f(G_{\sigma}(A)) \subset f(G_{\sigma}(B)) \subset G_{\mu}(I_{\mu}(f(B)))$. So $f(A) \subset G_{\mu}(I_{\mu}(f(B)))$. By Theorem 1.3(1), we have $f(A)\mu I_{\mu}(f(B))$. (2) \Rightarrow (3) For $B \subset Y$ by (2) $f(G_{\sigma}(f^{-1}(B))) \subset G_{\sigma}(I_{\sigma}(f^{-1}(B))) \subset G_{\sigma}(f^{-1}(B)) \subset G_{\sigma}(f^{$

(2) \Rightarrow (3) For $B \subset Y$, by (2), $f(G_{\sigma}(f^{-1}(B))) \subset G_{\mu}(I_{\mu}(f(f^{-1}(B)))) \subset G_{\mu}(I_{\mu}(B))$. Thus $G_{\sigma}(f^{-1}(B)) \subset f^{-1}(G_{\mu}(I_{\mu}(B)))$.

 $(3) \Rightarrow (2) \text{ For } A \subset X, G_{\sigma}(A) \subset G_{\sigma}(f^{-1}(f(A))) \subset f^{-1}(G_{\mu}(I_{\mu}(f(A)))).$ This implies $f(A) \subset G_{\mu}(I_{\mu}(f(B))).$

 $\begin{array}{l} (3) \Rightarrow (4) \text{ For } B \subset Y, \text{ by } (3), G_{\sigma}(f^{-1}(Y-B)) \subset f^{-1}(G_{\mu}(I_{\mu}(Y-B))). \\ \text{From Theorem 2.2, it follows } G_{\sigma}(X-f^{-1}(B)) \subset f^{-1}(Y-I_{\mu}(G_{\mu}(B))) = \\ X - f^{-1}(I_{\mu}(G_{\mu}(B))). \\ \text{Thus } f^{-1}(I_{\mu}(G_{\mu}(B))) \subset X - G_{\sigma}(X-f^{-1}(B)) = I_{\sigma}(f^{-1}(B)). \end{array}$

 $(4) \Rightarrow (3)$ It is similar to the proof of $(3) \Rightarrow (4)$

Let (X, σ) be a preconvexity space and $A \subset X$. A is said to be p-preconvex [4] (resp., α -preconvex) [6] if $A \subset I_{\sigma}(G_{\sigma}(A))$ (resp., $A \subset I_{\sigma}(G_{\sigma}(I_{\sigma}(A)))$). And A is said to be cop-preconvex (resp., $co\alpha$ -preconvex) if the complement of A is a p-preconvex (resp., α -preconvex) set.

LEMMA 2.5. Let (X, σ) be a preconvexity space and $A \subset X$.

(1) A is cop-preconvex iff $G_{\sigma}(I_{\sigma}(A)) \subset A$ [4].

(2) A is co α -preconvex iff $G_{\sigma}(I_{\sigma}(G_{\sigma}(A))) \subset A$ [6].

THEOREM 2.6. Let $f : X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . If f is strongly c-convex, then $f^{-1}(B)$ is convex for every cop-preconvex set B in Y.

Proof. Let B be a cop-preconvex set in Y, since f is strongly c-convex, by Lemma 2.5, $G_{\sigma}(f^{-1}(B)) \subset f^{-1}(G_{\mu}(I_{\mu}(B))) \subset f^{-1}(B)$. It implies $f^{-1}(B)$ is convex.

THEOREM 2.7. Let $f : X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . If f is strongly c-convex, then $f^{-1}(B)$ is convex for every co α -preconvex set B in Y.

Proof. Let *B* be a co α -preconvex set in *Y*. Then by Lemma 2.5, $G_{\sigma}(f^{-1}(B)) \subset f^{-1}(G_{\mu}(I_{\mu}(B))) \subset f^{-1}(G_{\mu}(I_{\mu}(G_{\mu}(B)))) \subset f^{-1}(B).$ Hence $f^{-1}(B)$ is convex.

DEFINITION 2.8. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be *strongly c-concave* if for $C, D \subseteq Y$ whenever $C\mu D$, $f^{-1}(C)\sigma I_{\sigma}(f^{-1}(D))$.

REMARK 2.9. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be *c*-concave [3] if for $C, D \subseteq Y$ whenever $C\mu D$, $f^{-1}(C)\sigma f^{-1}(D)$. Obviously it is that every strongly c-concave function is c-concave.

THEOREM 2.10. Let $f : X \to Y$ be a function on two preconvexities (X, σ) and (Y, μ) . Then the following things are equivalent:

(1) f is strongly c-concave.

483

Won Keun Min

(2)
$$f^{-1}(G_{\mu}(A)) \subset G_{\sigma}(I_{\sigma}(f^{-1}(A)))$$
 for all $A \subset Y$.
(3) $I_{\sigma}(G_{\sigma}(f^{-1}(A))) \subset f^{-1}(I_{\mu}(A))$ for all $A \subset Y$.

Proof. (1) \Rightarrow (2) Let f be strongly c-concave and $A \subset Y$. Since $G_{\mu}(A)\mu A$ and f is strongly c-concave, $f^{-1}(G_{\mu}(A))\sigma I_{\sigma}(f^{-1}(A))$. Thus by Theorem 1.3, $f^{-1}(G_{\mu}(A)) \subset G_{\sigma}(I_{\sigma}(f^{-1}(A)))$.

 $(2) \Rightarrow (1)$ If $C\mu D$ for $C, D \subset Y$, then $C \subset G_{\mu}(D)$. By hypothesis, $f^{-1}(C) \subset f^{-1}(G_{\mu}(D)) \subset G_{\sigma}I_{\sigma}(f^{-1}(D)))$. So $f^{-1}(C)\sigma I_{\sigma}(f^{-1}(D))$.

(2) \Rightarrow (3) For $A \subset Y$, from Theorem 1.3 and the condition (2), it follows $X - f^{-1}(I_{\mu}(A)) \subset f^{-1}(G_{\mu}(Y - A)) \subset G_{\sigma}(I_{\sigma}(f^{-1}(Y - A))) =$ $X - I_{\sigma}(G_{\sigma}(f^{-1}(A)))$. So $I_{\sigma}(G_{\sigma}(f^{-1}(A))) \subset f^{-1}(I_{\mu}(A))$. Similarly, it is obtained that (3) \Rightarrow (2).

DEFINITION 2.11. Let (X, σ) be a preconvexity space and $A \subset X$. *A* is called a *regular-preconvex set* (briefly, *r-preconvex set*) if $A = I_{\sigma}(G_{\sigma}(A))$. And *A* is called a coregular-preconvex set (briefly, corpreconvex set) if the complement of *A* is a *r*-preconvex set.

DEFINITION 2.12. Let (X, σ) and (Y, μ) be two preconvexity spaces. A function $f: X \to Y$ is said to be *almost c-convex* if $f^{-1}(A)$ is convex for every cor-preconvex set A of X.

THEOREM 2.13. Let $f : X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then the following things are equivalent:

(1) f is almost c-convex. (2) $G_{\sigma}(f^{-1}(G_{\mu}(I_{\mu}(F)))) \subset f^{-1}(F)$ for every convex set $F \subset Y$. (3) $G_{\sigma}(f^{-1}(G_{\mu}(I_{\mu}(G_{\mu}(B))))) \subset f^{-1}(G_{\mu}(B))$ for every $B \subset Y$.

 $\begin{array}{l} Proof. \ (1) \Rightarrow (2) \ \text{For a convex subset } F \ \text{of } Y, \ \text{then } G_{\mu}(I_{\mu}(G_{\mu}(I_{\mu}(F)))) \\ = G_{\mu}(I_{\mu}(F)), \ \text{that is, } G_{\mu}(I_{\mu}(F)) \ \text{is cor-preconvex. By } (1) \ \text{and } G_{\mu}(I_{\mu}(F))) \\ \subset F, \ G_{\sigma}(f^{-1}(G_{\mu}(I_{\mu}(F)))) = f^{-1}(G_{\mu}(I_{\mu}(F))) \subset f^{-1}(F). \\ (2) \Rightarrow (3) \ \text{Obvious.} \end{array}$

(3) \Rightarrow (1) Let A be cor-preconvex in Y. Since $G_{\mu}(I_{\mu}(G_{\mu}(A)) = A)$ and $G_{\mu}(A) = A$, by (3), we have $G_{\sigma}(f^{-1}(B)) \subset f^{-1}(B)$, and $f^{-1}(B)$ is convex. Hence f is almost c-convex.

Easily we have the following:

THEOREM 2.14. Let $f : X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then the following things are equivalent:

(1) f is almost c-convex.

(2) $f^{-1}(A)$ is co-convex for every r-preconvex set A of X.

(3) $f^{-1}(U) \subset I_{\mu}(f^{-1}(I_{\mu}(G_{\mu}(U))))$ for every co-convex set $U \subset Y$.

THEOREM 2.15. Let $f : X \to Y$ be a function on two preconvexity spaces (X, σ) and (Y, μ) . Then if f is strongly c-convex, then it is almost c-convex.

Proof. Let A be cor-preconvex in Y. Then $G_{\mu}(I_{\mu}(A)) = A$. From Theorem 2.4 (3), it follows $G_{\sigma}(f^{-1}(A)) \subset f^{-1}(G_{\mu}(I_{\mu}(A))) = f^{-1}(A)$. It implies $f^{-1}(A)$ is convex, and hence f is almost c-convex.

Let (X, σ) be a preconvexity space and $A \subset X$. A is said to be *semi*preconvex [5] (resp., β -preconvex) [7] if $A\sigma I_{\sigma}(A)$ (resp., $A\sigma I_{\sigma}(G_{\sigma}(A))$).

REMARK 2.16. For a function $f: X \to Y$ on two preconvexity spaces (X, σ) and (Y, μ) , from Theorem 2.4 and Theorem 2.10, the following things are obtained:

(1) If f is strongly c-convex, then for every convex set A of X, f(A) is semi-preconvex (β -preconvex) set B in Y.

(2) If f is strongly c-concave, then for every convex set B of Y, $f^{-1}(B)$ is semi-preconvex (β -preconvex) set B in Y.

(3) If f is strongly c-convex, then for every cor-preconvex set B of $Y, f^{-1}(B)$ is convex.

References

- M. D. Guay, An introduction to preconvexity spaces, Acta Math. Hungar. 105 (2004), no. 3, 241-248.
- [2] W. K. Min, A Note on preconvexity spaces, Honam Mathematical Journal, 29 (2007), no. 4, 589-595.
- [3] —, Some results on preconvexity spaces, Bull. Korean Math. Soc. 45 (2008), no. 1, 39-41.
- [4] , p-Preconvex set on preconvexity spaces, Honam Mathematical Journal 30 (2008), no. 3, 589-595.
- [5] —, Semi-preconvex set on preconvexity spaces, Commun. Korean Math. Soc. 23 (2008), no. 2, 251-256.
- [6] —, α-preconvex set on preconvexity spaces, Korean Annals of Mathematics 26 (2009), no 1-2, 5-11.
- [7] ----, β -preconvex set on preconvexity spaces, Commun. Korean Math. Soc. **25** (2010), no. 1, 105-110.
- [8] S. A. Naimpally and B. D. Warrack, *Proximity spaces*, Cambridge University Press, 1970.

Won Keun Min

*

Department of Mathematics Kangwon National University Chuncheon 200-701, Republic of Korea *E-mail*: wkmin@kangwon.ac.kr