Lee, Jaewon;Jeong, Bum Seok;Kim, Mi Sug;Choi, Jee Wook;Ahn, Byung Un
Korean Journal of Biological Psychiatry
/
v.12
no.2
/
pp.165-172
/
2005
Objectives:The purpose of this study is to 1) conduct a discrimination analysis of schizophrenia and bipolar affective disorder using MMPI profile through artificial neural network analysis and logistic regression analysis, 2) to make a comparison between advantages and disadvantages of the two methods, and 3) to demonstrate the usefulness of artificial neural network analysis of psychiatric data. Procedure:The MMPI profiles for 181 schizophrenia and bipolar affective disorder patients were selected. Of these profiles, 50 were randomly placed in the learning group and the remaining 131 were placed in the validation group. The artificial neural network was trained using the profiles of the learning group and the 131 profiles of the validation group were analyzed. A logistic regression analysis was then conducted in a similar manner. The results of the two analyses were compared and contrasted using sensitivity, specificity, ROC curves, and kappa index. Results:Logistic regression analysis and artificial neural network analysis both exhibited satisfactory discriminating ability at Kappa index of greater than 0.4. The comparison of the two methods revealed artificial neural network analysis is superior to logistic regression analysis in its discriminating capacity, displaying higher values of Kappa index, specificity, and AUC(Area Under the Curve) of ROC curve than those of logistic regression analysis. Conclusion:Artificial neural network analysis is a new tool whose frequency of use has been increasing for its superiority in nonlinear applications. However, it does possess insufficiencies such as difficulties in understanding the relationship between dependent and independent variables. Nevertheless, when used in conjunction with other analysis tools which supplement it, such as the logistic regression analysis, it may serve as a powerful tool for psychiatric data analysis.
Objective: The purpose of this study is to identify factors that affect the incidence of hypertension using logistic regression and decision tree analysis, and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 9,859 subjects from the Korean health panel annual 2019 data provided by the Korea Institute for Health and Social Affairs and National Health Insurance Service. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In logistic regression analysis, those who were 60 years of age or older (Odds ratio, OR=68.801, p<0.001), those who were divorced/widowhood/separated (OR=1.377, p<0.001), those who graduated from middle school or younger (OR=1, reference), those who did not walk at all (OR=1, reference), those who were obese (OR=5.109, p<0.001), and those who had poor subjective health status (OR=2.163, p<0.001) were more likely to develop hypertension. In the decision tree, those over 60 years of age, overweight or obese, and those who graduated from middle school or younger had the highest probability of developing hypertension at 83.3%. Logistic regression analysis showed a specificity of 85.3% and sensitivity of 47.9%; while decision tree analysis showed a specificity of 81.9% and sensitivity of 52.9%. In classification accuracy, logistic regression and decision tree analysis showed 73.6% and 72.6% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. It is thought that both analysis methods can be used as useful data for constructing a predictive model for hypertension.
Recently, the End-milling processing is needed the high-precise technique to get a good surface roughness and rapid time in manufacturing of precision machine parts and electronic parts. The optimum surface roughness has an effect on end-milling working condition such as, cutting direction, spindle speed, feed rate and depth of cut, and so on. It needs to form the correlation of working conditions and surface roughness. Therefore this study was carried out to presume of surface roughness on end-milling working condition of Al7075 by regression analysis. The results was shown that the coefficient of determination($R^2$) of regression equation had a fine reliability of 87.5% and nonlinear regression equation of surface rough was made by multiple regression analysis.
Objective: The purpose of this study is to use logistic regression and decision tree analysis to identify the factors that affect the success or failurein the national physical therapy examination; and to build and compare predictive models. Design: Secondary data analysis study Methods: We analyzed 76,727 subjects from the physical therapy national examination data provided by the Korea Health Personnel Licensing Examination Institute. The target variable was pass or fail, and the input variables were gender, age, graduation status, and examination area. Frequency analysis, chi-square test, binary logistic regression, and decision tree analysis were performed on the data. Results: In the logistic regression analysis, subjects in their 20s (Odds ratio, OR=1, reference), expected to graduate (OR=13.616, p<0.001) and from the examination area of Jeju-do (OR=3.135, p<0.001), had a high probability of passing. In the decision tree, the predictive factors for passing result had the greatest influence in the order of graduation status (x2=12366.843, p<0.001) and examination area (x2=312.446, p<0.001). Logistic regression analysis showed a specificity of 39.6% and sensitivity of 95.5%; while decision tree analysis showed a specificity of 45.8% and sensitivity of 94.7%. In classification accuracy, logistic regression and decision tree analysis showed 87.6% and 88.0% prediction, respectively. Conclusions: Both logistic regression and decision tree analysis were adequate to explain the predictive model. Additionally, whether actual test takers passed the national physical therapy examination could be determined, by applying the constructed prediction model and prediction rate.
Kim, Yong-Hwan;Kim, Ja-Hee;Park, Ji hoon;Lee, Seung-Jun
Journal of the Korea Society of Computer and Information
/
v.21
no.11
/
pp.127-134
/
2016
In this paper, we propose factors that influence on the mobile commerce satisfaction conducted by data mining and a PLS regression analysis. We extracted the most frequent words from mobile application reviews in which there are a large number of user's requests. We employed the content analysis to condense the large number of texts. We took a survey with the categories by which data are condensed and specified as factors that influence on the mobile commerce satisfaction. To avoid multicollinearity, we employed a PLS regression analysis instead of using a multiple regression analysis. Discovered factors that are potential consequences of customer satisfaction from direct requests by customers, the result may be an appropriate indicator for the mobile commerce market to improve its services.
Transactions of the Korean Society of Machine Tool Engineers
/
v.12
no.5
/
pp.46-52
/
2003
End-milling have been used widely in industrial system because it is effective to a material manufacturing with various shape. Recently the end-milling processing is needed the high-precise technique with good surface roughness and rapid time in precision machine part and electronic part. The optimum surface roughness has an effect on end-milling condition such as, cutting direction spindle speed, feed rate and depth of cut, etc. Therefore this study was carried out to presume for mutual relation of end-milling condition to get the optimum surface roughness by regression analysis. The results shown that coefficient of determination($\textrm{R}^2$) of regression equation has a fine reliability of 87.5% and regression equation of surface rough is made by regression analysis.
This paper offers the theory and method for regression analysis of the regression model with operational parameter variables based on the fundamentals of mathematical statistics. Regression coefficients are usually constants related to the problem of regression analysis. This paper considers that regression coefficients are not constants but the functions of some operational parameter variables. This is a kind of method of two-step fitting regression model. The second part of this paper considers the experimental step numbers as recursive variables, the recursive identification with unknown operational parameter variables, which includes two recursive variables, is deduced. Then the optimization and the recursive identification are combined to obtain the sequential experiment optimum design with operational parameter variables. This paper also offers a fast recursive algorithm for a large number of sequential experiments.
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2002.11b
/
pp.86-91
/
2002
The regression analysis in the six sigma process is used to reduce the vibration of an electric grinder. The vibration characteristics and the contribution of each part to overall vibration of the electric grinder is investigated through various vibration measurements and frequency analysis for the assembled and disassembled one. Then the application of the regression analysis finds out that the rotating components of the armature have more severe contributions to the overall vibration than the frequency components of the fan or the gear part, which is decided with higher value of the coefficient of determination. The unbalance and looseness of the armature and the fan are tested again by the regression analysis in order to decide how much unbalance or looseness should be reduced for the predetermined goal of vibration level of the electric grinder. These results show that the regression analysis can be a valuable tool in production line to decide where and how much faults needs to be adjusted for the reduction of vibration and noise.
Objective: The aim of this study was to investigate the relationship between aiming patterns and scores in archery shooting. Method: Four (N = 4) elementary-level archers from middle school participated in this study. Aiming pattern was defined by averaged acceleration data measured from accelerometers attached on the body during the aiming phase in archery shooting. Stepwise multiple regression analysis was used to test whether a model incorporating aiming patterns from all nine accelerometers could predict the scores. In order to extract period of interest (POI) data from raw data, a Dynamic Time Warping (DTW)-based extraction method was presented. Results: Regression models for all four subjects are conducted with different significance levels and variables. The significance levels of the regression models are 0.12%, 1.61%, 0.55%, and 0.4% respectively; the $R^2$ of the regression models is 64.04%, 27.93%, 72.02%, and 45.62% respectively; and the maximum significance levels of parameters in the regression models are 1.26%, 4.58%, 5.1%, and 4.98% respectively. Conclusion: Our results indicated that the relationship between aiming patterns and scores was described by a regression model. Analysis of the significance levels, variables, and parameters of the regression model showed that our approach - regression analysis with DTW - is an effective way to raise scores in archery shooting.
PURPOSES : This study is to construct the regression models of drainage asphalt concrete specimens and to provide the appropriate coefficients of hydraulic conductivity prediction models. METHODS: In terms of easy calculation of the hydraulic conductivity from porosity of asphalt concrete pavement, the estimation model of hydraulic conductivity was proposed using regression analysis. 10 specimens of drainage asphalt concrete pavement were made for measurement of the hydraulic conductivity. Hydraulic conductivity model proposed in this study was calculated by empirical model based on porosity and the grain size. In this study, it shows the compared results from permeability measured test and empirical equation, and the suitability of proposed model, using regression analysis. RESULTS: As the result of the regression analysis, the hydraulic conductivity calculated from the proposal model was similar to that resulted from permeability measured test. Also result of RMSE (Root Mean Square Error) analysis, a proposed regression model is resulted in more accurate model. CONCLUSIONS: The proposed model can be used in case of estimating the hydraulic conductivity at drainage asphalt concrete pavements in fields.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.