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ABSTRACT

This paper offers the theory and method for regres-
sion analysis of the regression model with operational
parameter variables based on the fundamentals of math-
ematical statistics. Regression coefficients are usually
constants related to the problem of regression analysis.
This paper considers that regression coefficients are not
constants but the functions of some operational parame-
ter variables. This is a kind of method of two-step fitting
regression model. The second part of this paper considers
the experimental step numbers as recursive variables,
the recursive identification with unknown operational pa-
rameter variables, which includes two recursive variables,
is deduced. Then the optimization and the recursive
Identification are combined to obtain the sequential ex-
periment optimum design with operational parameter
variables. This paper also offers a fast recursive algorithm
for a large number of sequential experiments.

1. INTRODUCTION

To conserve energy and materials, people recently
study the techniques for augmenting heat transfer in
different heat transfer equipments. One kind of these
equipment is spirally corrugated tubes, which is shown
in Fig.1, a section of the four-start corrugated tubes is
shown in Fig.2 [8]. The structure design of these tubes
is a important scientific research subject. Though many
studies have been conducted on these tubes, a lack of
systematic study on the prediction of optimum tube
geometrical structure and the development of unified
correlation which can be examined for any type of these
tubes.

For example, in the study of heat transfer character-
istics on single- and multistart spirally corrugated tubes,
the friction factor and heat transfer were considered.

Ganeshan, S. (1981) got the result of friction and
heat transfer correlation as follows[6], which was from an
experimental investigation of seven spirally corrugated
tubes,

friction correlation:

R(RH)[h/(p — w)]>**(N)>*(n)*° = 0.273In(h ) + 0.127

heat transfer correlation:

log[G(h*, PryPr0%] = 2.576 — 1.707log h*
+ 0.497(log h*)? — 0.0103(log A™)°

Sethumadhavan, R. (1986) obtained the result of
friction and heat transfer correlation in the following|7],
which was from an experimental investigation of five
spirally corrugated tubes,

friction correlation:

R(h*)(W? [pDieg))° ™ = 040(RF)°*% 3 < h* < 200
heat transfer correlation:
G(h*, Pr)(Pr7%%) = 8.6(h")"1 25 < h* < 180

The above models were fitted in their own experi
mental area and the cost factor, besides, the operating
conditions at the fluid (e.g. Reynolds number, etc.),
which are defined as the operational parameter variables,
were not taken into consideration, so it might influence
the final selection of the tubes for use in heat exchangers.

This paper proposes to solve the above optimal
design problem in another aspect. Firstly, as concerns as
the spirally corrugated tubes, without losing generality,
we will consider the relationship between the structure
parameters[5)], that is, « = tan™'(vD/p), H = p/N, so
the structure parameters of tubes can be concluded
as concisely two independent dimensionless structure
parameters ¢, = h/D and z; = H/h.

The friction factor f and the heat transfer charac-
teristics factor St (Stantom number) are considered as
the quantitative indexes Y, which is the function of the
structure parameters X = [z, ;] and the operational
parameter variables 2 = {21] = Re, respectively, that is,

St = G(h/D, H/h, Re)

f=G(h/D,HJh Re)’ (1.1)
This can be written as
y:g(I],Z‘g,Z). (12)

The objective function @ is the function of model Y,
Q = J(Y). For example, Q is chosen as Q = f/(Pr®St?)
in the optimal design of intensitied heal transfer.
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Nomenclature

h — height of corrugation (mm)
D - tube inside diameter (1nm)
N — number of starts

p - pitch (mm)

H — effective pitch(mm),(p/N)
« - helix angle (degree)

n‘ - flow behavior index

f - friction factor

Fig. 1 Typical spirally corrugated tubes

Because the property of the object we want to study
is not clearly known, and it is difficult to certain the
physical characteristics model. So we can think of the
object as a ”black box” to build its regression model on
the basis of mathematical statistics. The regression coef-
ficients of the models mentioned above are not constants
but the functions of the operational parameter variables.
This is essentially different from present theories and
methods of sequential experimental design and regression
analysis. This will be discussed in Section 2.

Secondly, the model mentioned above is got in
the certain size of the sample, that is the area of
experiment, and it has the random error, so in order
to search the optimal design parameters, it is necessary
to effectively enlarge the size of the sample to modify
the models with recursive identification, and to attain
the goal of optimization. This is the concept of optimal
sequential design originated from this paper. In addition,
the recursive identification here includes two recursive
variables, this paper offers a new kind of recursive
identification. It is also obtained by two steps. It will be
stated in Section 3.

In Section 4, we also give a fast recursive algorithm
for a large number of sequential experiments.

2. REGRESSION ANALYSIS OF
QUADRATIC MODEL WITH THE
OPERATIONAL PARAMETER VARIABLES

2.1 Description of general mathematical
form

Let X=[r1,...,2,])* be n-dimensional vector de-
noting n structural variables, Z=[z,...,zm]* be m-
dimensional vector denoting m operational parameter
variables, and Y (quantitative index) be the quadratic
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Pr - Prandtl number

St — Stantom number

h* - roughness Reynolds number
[(h/Deq)Re\/T/g]

Re - Reynolds number

R(h*) - momentum transfer roughness function

G(h*, Pr) - heat transfer roughness function

Dy — equivalent diameter (mm), (D ~ k)

Fic. 2 C!ﬂracl:rislic parameters of a spirally corrugated
tube. i, height of corrugation, w, width of corrugation, p, pitch
of corrugation, D, diameter of tube, a, helix angle,

form with the operational parameter variables, that is,
n
Y = folz1, - 2m) + 3 Bilz1, -y 2z
i=1

n n
+Y Bz, zmel+ Y Bila,
i=1

i<J

where ¢ is the random error.

To fit the equation (2.1.1), we do the following
experiments, the experiment scheme is shown in the
Table. 1 (See the Appendix).

Hence, we obtain,

va(v) = fo(v) + 3 Bilw)za + D_ i)l

n
(2.1.2)
+ Zﬁ;j(v)z,-uzju + eyu(v)
i<j
u=1,...,N;jv=1,..., M.

Where

Bi()2Bi(210, - -, Zmw)s
Bi (V)28 (210, - - - Zoww),

,v).

The random errors {ey(v),u = 1,...,N;v
1,..., M} satisfy the four assumptions: (1). indepen-
dence; (2). unbiasedness, Ele,(v)] = 0; (3). equality in
variance, Var[ey{(v)] = ¢2; (4). normality, N(0,0?).

The model is fitted by two steps.

2.2 First step fitting models —  the quan-
titative variable versus the structural variables

2.2.1. The least square identification

ﬁo(U)éﬁo(Zlv, cee vzmv)y
ﬁii(“)éﬁii(zlu: ceey va)y
eu(v)Beu(z10, . w(®)Syulv, .

oy va)v



For any fixed v, that is any given set of operational
parameters, after N experiments, the least square esti-
mators By(v) of the coefficients By (v) in the equation
(2.1.2) is the following form,

EN('U) Z(miN)—lm?N(v). v=1,---, M.
(2.2.1)
where,
Y (v) =), ..., yn(o)]*

BN(U) = [bo,N(U)) bl,N(U)a RN bn,N(U)) bl],N(U)7 ey
bnn,N('U)) blZ,N(”): sy b(n'—l.ﬂ),N(v)]*

ﬁN('U) = [ﬂo(“)a /31 (U)v L] ﬂn(v)v ,311(’1)), e yﬂnn(v),
612(“)1 ceey Bn-—l,n(v)]*
When v = 1,---, M, we have M sets of EN(’U). The

equation got from least square estimators B y(v) is called
initial regression equation, which can be written as the
form of matrix,

Y(v) = XnBn(v) (2.2.2)

where _ X .
Y(v) =[1@),.... YnO)"
the symbol ” * ” represents transpose.
2.2.2 Variance analysis
[THEOREM] For any fixed v, the variance sum of
squares of equation (2.2.2) can be written as follows,

N N
D () =TI =) lyale) = V()P
=1 u=]1

+Z v) = g(v))?

(2.2.3)

Where,
1 N
= _‘§ yu(v)
N

yyu(v) and Y/u(v) are represented in the equation (2.1.2)

The proof is omitted here.

We may give the analysis of variance as usual in
Table 2(See the Appendix). Where the F-ratio is as
follows,

i _ N TeeVa0) = TP
Nu N N Y 2’

4t Py [yu(v) — Ya(v)]
Ngy=N-[2n+n(n—1)/2]-1, Ng = 2n4n(n—1)/2

2.2.3 Regression analysis

Now we make use of the table of variance analysis to
get the significance testing of the model (2.2.2).

Since the estimators of regression coefficients
bo(’U),bi(v), bii(U),bij(U), (i,j = 1,---,n,1 < j) obey the
normal distributions N (8o(v), coe0?), N{(Bi(v), ciio?),
N(Bii(v), ciuiso?), N(Bij(v), cijijo?), respectively, and

(v)/o? follows X? - distribution with the degree of
freedom Ny, where S)(v) = 2V [yulv) — Yi(v)], there-

fore
(bi(v) — Bi(v)) /Mciiaz
=1
(1/\/—— \/51 /U2 N

(2.2.4)

follows ”Student” distribution with d.f.N4, and we can
test the following hypotheses: §; =0, =1,-.- n

We can also get the same conclusions about
Bo(v), Bii(v), Bi;(v), if we change the note (2) to (0), (4z)
or (ij).

2.3 Second step fitting models — the regres-
sion coefficients versus the operational param-
eter variables

The coefficients Bo(21, ...\ zm ), Bilz1, .-+, 2m)s
Bii(z1, ..., zm), Bij(z1,...,2m), with the operational
parameter variables (zj,...,2zm) can be expended
with Talor series. We use a quadratic form to
denote the relationship between SBi(z,...,zm)
and (z1, ..., zm) as follows,

ﬁlva()+2a(’)z +Za(') 2+Za ,zez:—f—e()

e<e
(2.3.1)

m m
bi(v) = aé’)+2 a(g')zgv-}—z al®z2 4 Z a(e:),ze,,ze,v-lf-esf)
e=1 e=1

e<e!
(2.3.2)
(=1, M)

From the assumptions in section 2.1, {e:ﬁ,i),v
. M,i=1,...,n} satisfy the four conclusions: (1

independence; (2) unbiasedness: E[eg,i)] = 0;
(1 )]

Z

(3) equality

in variance: Var[ey'} = ¢;50%; (4) normality: N (0, ciyo?).

=z
The least square estimators X(A})N of the coefficients
K(AII)N in the equation (2.3.2) can be obtained through
the same procedures as section 2.2, so do the variance

analysis and the regression analysis, that is,

=)

Aprn = (B3 ) 7 BBy - (2.3.3)
where,
=) ; ; . .
Ayn = = [a (z)’ a(ll)v s %)) a(zl), o :‘7'5:;)711,
(l) (1)
A1z s am—l,m]*
i) (X)) (%)
AA!,N [ Qg 0y 1015:1),011 "05711)171’
OIS
Ay, m 1,m

i
b;;YN = (bi(1),-- -,

Now the regression model can be written as follows,

m m
:ag')+2a(;)ze+2ag’2 24 Z ez (2.3.4)
e=1 e=1

e<e

bi(AM))*

(z=l,,n)

We can also obtain the same conclusions about
=(0) 1) ()
My Ay AM n if we change the superscript (i) to

(0), (i) or (ij).
2.4 Total regression model and total vari-
ance analysis
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Now we yield the total regression equation:

Y ﬁa‘f-Zﬁﬂz*‘Zﬂnz +Zﬁl.7z T

i<y

(m) Z a®z, +Za<0> 2+Za ,zz/)

E(e

+Z( (1) Z (1)2 +Z (1)22.1..2(1( ,ZZI)

e<e
+ Z(agm + Za(u)z + Z a(u) 2 Z
=1 E<e
+ }:( 6 4 zaw» + zam 2
1<]
eze/)zizj
(2.4.1)

(4)

+ Z aﬂ'el z
ece

From the equation (2.2.3), we consider the total

variance sum of squares be,

(1)
a ,zez 7

)

v) = G(o))?

M N A M N .
=33 [u(v) = Yu(@) + 3D [Vu(v) = Yu(o)P
+3 S Wule) - TP
A
+23° S Vale) = Va@)l[Vale) ~ 7)) (2.42)

Besides, the variance sum of squares in the first step
fitting, that is, the equation (2.2.3) can be written as
follows,

M N
S5 Toulv) — F)F =

1;}\41 u=1 My
> Z yul(v =Y Z - )
e R (2.4.3)

For comparison with two equations, the sum of 3rd
and 4th terms in the right side of the equation (2.4.2) is
less than the sum of 2nd term in the right side of the
equation (2.4.3), and we desire that they are approaching
nearly.

Hence we have,

When having Zﬁil fy:l[yu(u) — Y, (v)]? as a measure-
ment, we express the relative error form as follows,

N “)_A 0)]/Yulv)} <550,
Ail SN Alslv) = V) a0}

’\I

-Y,
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51 is given (2.4.4)

If the equation (2.4.4) does not satisfy, then we
should increase such order of the regression equation
in the sccond step fitting procedure that the equation
(2.4.4) satisfies.

Up to now, we have finished the fit of initial models
through the pre-experiments and statistical analysis. The
initial models determine the structure of the process
models.

3. SEQUENTIAL DESIGN AND
RECURSIVE IDENTIFICATION WITH THE
OPERATIONAL PARAMETER VARIABLES
3.1. The resource of the problem
Suppose the objective function of optimization be

Q. The relationship between @ and the structure param-
eters X and the operational patameters Z can be written
as follows,

Q=/Xx1)

We want to search such optimal treatment combination
(X, Z) that @ arrives at the extremum. That is

(3.1.1)

f(X,2) = (3.1.2

)

max f(X,z).
The equation of (3.1.2) can be solved by a general
non-linear multi-variables optimization, e.g. method of
optimal steepest ascents.

Because the function f(X,Z) is got in the certain
size of the sample , and it has the random error, we
take the following measures to search the optimal design
parameters.

3.2 The selection of the sequential experiment
point

We can find a better treatment combination in the
process of pre-experiment design, and take it as the start
point (X, 2(¥) for the optimization of the equation
(3.1.2).

The new experiment point, that is the new experi-
ment treatment combination, can be obtained,

VF(x™*)

o f(x™), 2]
v f(z5)

IV (x|

x(k+1) — x(k) + h(k)

(3.2.1)
2641 — g (B (0

where A% is the optimal step in the process of one-
dimensional search technology.

The new experiment observing values can be ob-
tained on the point of (X**1 z*+D) 1o modify the
model with recursive identification.

3.3 Recursive identification of regression model
with operational parameter variables

The recursive model here differs from the general
recursive identification algorithm, because it has the
factors of the operational parameter variables Z.

The first step fitting models are called X-model, the
second step fitting models Z- model, and the total model
XZ-model here.

The total model (2.4.
{(Zr0, -y Zpu) 0 =
{(Zlu, ceey 2771")1 v=1--

1) is obtained by N sets of
N} and M sets of
M}. I we want to modify



the XZ-model through the sequential experiment point

(2F,--, 2}, 2§, -, 2m*), that is, (N41)th

(11,N+1‘ cy $n,N+1) and (M+1)th (Zl,M+1, Ty Zm,M+1)~
The experiment scheme is listed in Table 3(See the
Appendix).

From the Table 3, we can see that there are two ex-
perimental step numbers to be increased in the sequential
experiment design, they are N and M. So there are two
recursive variables in the recursive identification of the
total regression model shown in the equation (2.4.1). It
increases both the number of regression models and the
estimated parameters. This is different from the general
recursive identification.

So we consider the total recursive identification
yielded by two steps.

Firstly to find the recursive form of the X—model,
suppose N be the variable parameter, the recursive
formulae of the equation (2.2.1) is,

§N+1(U) = EN(U) + _ENH[?JNH('“) - $N+1EN(U)]
Kny1= IR‘Nm-H(I + PN+1RNT7TV+1)_1

ﬁN+1 = .7_€N - ﬁN:ﬁ;\/H(l + fN-HﬁN’_ﬁ;\IH)_15N+17’€N
v=1,---, M. (3.3.1)

Where,

Bri1(v) = [Bons1(v), by ver(v), oy b v (V)
b11,N+1(U); e )bnn,N+](U)s
bm,N+1(U), ceey b(n—1,n),N+1(U)]*

P41 is the last line of the matrix X4, that is,

E5) — 2 2
Pyyr = [1y$1,N+1’ T ZaN+L T N+ T T Ny
T N+1Z2 N+ zn—l,N+1In,N+1]
Rvar = (CyarXvan)
N+1 — (XN+1XN+1)
For v = M + 1, the number of X-model is increased,
that is,

v M +1) = Bo (M + 1)+ 3 Bivar(M + Dz

i=1

n
+ > Binea(M + e}

i=1
n

+ Z:@ij.NH(‘M + Dziz; +eo(M +1).
<]

u=1,-- NN +1. (3.3.2)

The least square estimators ENH(M + 1) of the
By (M +1) s,

Byi(M +1)

= (K*NHR_NH)_IX—*NH?NH(M + 1)~ (3-3~3)

where,

Bya(M+1) ={fonui(M+1), 5 yor (M +1),...,
Banet{M +1), Buna(M+1),..., Bon i (M +1),
Bians1(M+1),..., Bty e (M+ 1)

Bya(M+1) = [bonar(M +1),buyar(M + 1),
by nt(M 4+ 1), b1y Nor (M + 1), b N (M + 1),
banei (M + 1), b1y N4t (M 4 1))

yv+1 (M + 1)]*

Secondly to find the recursive form of the Z-model, and
let M be the variable parameter.

The recursive form of X(;,)N is concerned with two
variable parameters, one is the recursive of M, the other
is the recursive of N in respect to the recursive model
(3.3.1) through the term E('CI)N

=(7) .
The X(J\lfl+1,N+1 can be the following form,

—=(4) T = —15* —(i)
Appoiner = @ Zae) Zypaabig o vr (3.34)
L) .
Where, the element in by; A, is from

§N+1(1),~--,EN_H(M),ENH(M + 1) in the equation

(3.3.1) and (3.3.3), that is,

E(A})H’NH = [b; v1{1), - b N1 (M), by v (M + 1)]°
3 AN

547 i Slbivaa (1), by vga (M)

We have a theorem about the recursive form of the

equation (3.3.4).
[THEOREM]

=) — =(%) — —
Apraane: = BuaaAy v + Fara ve1Dar Y (M)

—i) _
- Pi,N+1AM,N] + Larpbi yar (M + 1)
z:.M+1 = TMEWH“ + _Q—ItﬂlTJug“}v/ml)Vl
Tror =Tar = Tag Qagan (1 + Qagn Tt Qi)™ Qs T ar

i=1,--,n (3.3.5)
where,
Epgr =Ingy — Lae1 - @y
FM+1,N+1 = ki,N+1§M+1
My =2m+m(m-—1}/2+1
— —— _ —
Ta=(ZyZn)" Du=Tuiy
—Q_M+1 is the last line of matrix Z 741, that is,
Vol 2 2
QM+1 = [17 ZL M+ Em M By M z:n’MH,

ZL,M4122,M 415 - s Zm—-x,M+12m,M+1]

K41 and Py yq are in the equation {3.3.1), we note,

— Jay
K:N+1=[ko,N+1v kl,N+l Tt ‘/Cn,N+17 kll,N+1; Ty k‘nnJ\'H»
k12,N+1y c vk(n—l,n),N+l]*
= A
PN+1=[P0,N+1;P1,N+1 P N+1:PLI N+ Pan N+
P12, N+1, " - vp(n—l,n),N+1]
Yn{M) = [QN+1(1)7 ) yN+1(AM)]*
) =10)
There are the same results for Apriy v,
(i) (i)

Aji N4> Aprha vy 1f the superseript (i) is changed to

(0).(ii) or (ij).
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Here, the recursive estimators By (M + 1),
Ay can be used to modify the total XZ-model
with operational parameter variables. The modified
model is forming the objective function again, the new
experiment point is got again according to the optimal

Hence, we can make use of the previous results while

avoiding complicated and repeated calculations.
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Appendix
Table 1: Experimental Scheme Table 2: Variance Analysis
term Source of Squares Degrees of | F-ratio
No. Levels of QObserving value Y difference freedom
of Structural variables Levels of operational Effect on N () =30 Na F,{}:’
experiment parameter variables variable
z Zo | (211, Zm1) (z1,0, -, ZmM) Regression | & [y (v) — V(0] Ny
1 Ty, z, | w(1,...,1) n(M,..., M) variance
2 Ty T2 | w01 va(M,.. ., M) Total Tailv(v) = F)) N-1
N TN zon | yn(l..1) yn(M,..., M)
Table 3: Experimental Scheme
term
No. Levels of Observing value Y
of Structural Levels of operational
experi- variables parameter variables
ment |z, To | (211,01 Zm1) (21,000 - s Zm,p) (ZuM41y -+ Zm M41)
1 z1,1 zay | wfl,. ., 1) n(M,..., M) n(M+1,...,M+1)
2 Ti Toz | w2l 1) ya(M,. .., M) p(M+1,...  M+1)
N TN zon | yn(l,...,1) yn(M, ... M) yv(iM+1,...,M+1)
N+1 | zyngr- Ton+r | yvea(d, .0 1) yvar (M, M) fyv(M+ 1,0, M+ 1)
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