• 제목/요약/키워드: regression outlier

검색결과 116건 처리시간 0.018초

First Order Difference-Based Error Variance Estimator in Nonparametric Regression with a Single Outlier

  • Park, Chun-Gun
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.333-344
    • /
    • 2012
  • We consider some statistical properties of the first order difference-based error variance estimator in nonparametric regression models with a single outlier. So far under an outlier(s) such difference-based estimators has been rarely discussed. We propose the first order difference-based estimator using the leave-one-out method to detect a single outlier and simulate the outlier detection in a nonparametric regression model with the single outlier. Moreover, the outlier detection works well. The results are promising even in nonparametric regression models with many outliers using some difference based estimators.

Asymptotic Properties of Outlier Tests in Nonlinear Regression

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.205-211
    • /
    • 2006
  • For a linear regression model, the necessary and sufficient condition for the asymptotic consistency of the outlier test statistic is known. An analogous condition for the nonlinear regression model is considered in this paper.

  • PDF

Simultaneous outlier detection and variable selection via difference-based regression model and stochastic search variable selection

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권2호
    • /
    • pp.149-161
    • /
    • 2019
  • In this article, we suggest the following approaches to simultaneous variable selection and outlier detection. First, we determine possible candidates for outliers using properties of an intercept estimator in a difference-based regression model, and the information of outliers is reflected in the multiple regression model adding mean shift parameters. Second, we select the best model from the model including the outlier candidates as predictors using stochastic search variable selection. Finally, we evaluate our method using simulations and real data analysis to yield promising results. In addition, we need to develop our method to make robust estimates. We will also to the nonparametric regression model for simultaneous outlier detection and variable selection.

MULTIPLE OUTLIER DETECTION IN LOGISTIC REGRESSION BY USING INFLUENCE MATRIX

  • Lee, Gwi-Hyun;Park, Sung-Hyun
    • Journal of the Korean Statistical Society
    • /
    • 제36권4호
    • /
    • pp.457-469
    • /
    • 2007
  • Many procedures are available to identify a single outlier or an isolated influential point in linear regression and logistic regression. But the detection of influential points or multiple outliers is more difficult, owing to masking and swamping problems. The multiple outlier detection methods for logistic regression have not been studied from the points of direct procedure yet. In this paper we consider the direct methods for logistic regression by extending the $Pe\tilde{n}a$ and Yohai (1995) influence matrix algorithm. We define the influence matrix in logistic regression by using Cook's distance in logistic regression, and test multiple outliers by using the mean shift model. To show accuracy of the proposed multiple outlier detection algorithm, we simulate artificial data including multiple outliers with masking and swamping.

Test for an Outlier in Multivariate Regression with Linear Constraints

  • Kim, Myung-Geun
    • Communications for Statistical Applications and Methods
    • /
    • 제9권2호
    • /
    • pp.473-478
    • /
    • 2002
  • A test for a single outlier in multivariate regression with linear constraints on regression coefficients using a mean shift model is derived. It is shown that influential observations based on case-deletions in testing linear hypotheses are determined by two types of outliers that are mean shift outliers with or without linear constraints, An illustrative example is given.

A Score test for Detection of Outliers in Nonlinear Regression

  • Kahng, Myung-Wook
    • Journal of the Korean Statistical Society
    • /
    • 제22권2호
    • /
    • pp.201-208
    • /
    • 1993
  • Given the specific mean shift outlier model, the score test for multiple outliers in nonlinear regression is discussed as an alternative to the likelihood ratio test. The geometric interpretation of the score statistic is also presented.

  • PDF

Testing Outliers in Nonlinear Regression

  • Kahng, Myung-Wook
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.419-437
    • /
    • 1995
  • Given the specific mean shift outlier model, several standard approaches to obtaining test statistic for outliers are discussed. Each of these is developed in detail for the nonlinear regression model, and each leads to an equivalent distribution. The geometric interpretations of the statistics and accuracy of linear approximation are also presented.

  • PDF

서포트벡터 기계를 이용한 이상치 진단 (Outlier Detection Using Support Vector Machines)

  • 서한손;윤민
    • Communications for Statistical Applications and Methods
    • /
    • 제18권2호
    • /
    • pp.171-177
    • /
    • 2011
  • 실생활에서 얻어지는 자료에서 근사함수를 구성하기 위하여 모델링을 하기 전에 측정된 원자료로부터 이상치를 제거하는 것이 필요하다. 기존의 이상치 진단의 방법들은 시각화나 최대 잔차들을 이용해왔다. 그러나 종종 다차원의 입력자료를 가지는 비선형함수에 대한 이상치 진단은 좋지 않은 결과를 얻었다. 다차원 입력자료를 갖는 비선형함수에 대한 전형적인서포트 벡터 회귀에 기초한 이상치 진단방법들은 좋은 수행능력을 얻어지지만, 계산비용이나 모수들의 보정 등의 실질적인 문제점들을 가지고 있다. 본 논문에서 계산비용을 감소하고 이상치의 문턱을 적절히 정의하는 서포트 벡터회귀를 이용한 이상치 진단의 실질적인방법을 제안한다. 제안한 방법을 실제자료들에 적용하여 타당성을 보일 것이다.

Assessing the Accuracy of Outlier Tests in Nonlinear Regression

  • Kahng, Myung-Wook;Kim, Bu-Yang
    • Communications for Statistical Applications and Methods
    • /
    • 제16권1호
    • /
    • pp.163-168
    • /
    • 2009
  • Given the specific mean shift outlier model, the standard approaches to obtaining test statistics for outliers are discussed. Accuracy of outlier tests is investigated using subset curvatures. These subset curvatures appear to be reliable indicators of the adequacy of the linearization based test. Also, we consider obtaining graphical summaries of uncertainty in estimating parameters through confidence curves. The results are applied to the problem of assessing the accuracy of outlier tests.

Unified methods for variable selection and outlier detection in a linear regression

  • Seo, Han Son
    • Communications for Statistical Applications and Methods
    • /
    • 제26권6호
    • /
    • pp.575-582
    • /
    • 2019
  • The problem of selecting variables in the presence of outliers is considered. Variable selection and outlier detection are not separable problems because each observation affects the fitted regression equation differently and has a different influence on each variable. We suggest a simultaneous method for variable selection and outlier detection in a linear regression model. The suggested procedure uses a sequential method to detect outliers and uses all possible subset regressions for model selections. A simplified version of the procedure is also proposed to reduce the computational burden. The procedures are compared to other variable selection methods using real data sets known to contain outliers. Examples show that the proposed procedures are effective and superior to robust algorithms in selecting the best model.