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Abstract

For a linear regression model, the necessary and sufficient condition for 
the asymptotic consistency of the outlier test statistic is known. An 
analogous condition for the nonlinear regression model is considered in 
this paper.
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1. Introduction
 

We consider the problem of testing for multiple outliers in nonlinear regression. 

We shall proceed by first given a specific model for multiple outliers, assuming 

the suspect set of outliers is known. Given the specific mean shift model, several 

standard approaches to obtaining test statistics for outliers are discussed by 

Kahng(1995). These include likelihood ratio tests, Wald tests, and score tests. 

Due to nonlinearity, inference of parameters in nonlinear regression models does 

not enjoy any tactable finite sample optimality property. A general approach to the 

theoretical study in nonlinear regression models is thus asymptotic. Much of the 

work was done by first assuming the consistency of nonlinear least square 

estimators and then proving the asymptotic normality, constructing the confidence 

region, testing hypothesis, etc. The relatively harder questions of consistency were 

first rigorously proved by Jennrich(1969) and Wu(1981).

For a linear regression model, the necessary and sufficient condition for the 
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asymptotic consistency of the outlier test statistic is known. An analogous 

condition for the nonlinear model is considered in this paper.

2. Outlier Models and Test in Nonlinear Regression

The standard nonlinear regression model can be expressed as

yi = f (x i,  θ ) + i ,  i = 1 , , n,

in which the i -th response yi  is related to the q-dimensional vector of known 

explanatory variables x  i  through the known model function f , which depends on 

p-dimensional unknown parameter θ , and i  is error. We assume that f  is twice 

continuously differentiable in θ , and errors i  are i.i.d normal random variables 

with mean 0 and variance σ2
. In matrix notation we may write,

y = f (X,  θ ) + ,      (2.1)

where y  is an n-dimensional vector with elements y1, , yn , X  is an n q  

matrix with rows x 1, , x n ,  is an n-dimensional vector with elements 1, , n , 

and f(X,  θ ) = (f (x 1, θ ), , f (x n, θ ))T .

Suppose we suspect in advance that m  cases indexed by an m-dimensional 

vector I= (i1, , im )  are outliers. It can be helpful to write the model as 





  yi = f (x i,  θ ) + i + i ,  i I
  yi = f (x i,  θ ) + i ,  i I

which is called the mean shift outlier model. In matrix notation we may write,

y = f (X,  θ ) + D + ,        (2.2)

where = ( i1
, , im

)T, and D= (d 1, , d m ) , and d j  is the ij-th standard basis 

vector for R n .

We denote the log-likelihood for model (2.2) by L (θ ,  ,σ2 )  and obtain

L (θ ,  , σ2 )  =  −
n
2

  log σ2 −
1

2σ2
 (y− f(X,  θ ) − D )T(y− f (X,  θ ) − D )

=  −
n
2

 log σ2 −
1

2σ2
 S (θ, )    (2.3)

where S (θ ,  ) = (y − f(X, θ ) − D )T(y− f(X, θ ) − D ) . Given σ2
, (2.3) is 
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maximized with respect to φ = (θ, )  when S (θ, )  is minimized, with minimum 

at the least squares estimate φ̂ = (θ̂ (I ),  ̂ ) . Furthermore, ∂L/∂σ2 = 0  has solution 

σ2 = S (θ, )/n, which gives a maximum for given φ  as the second derivative is 

negative. This suggests that φ̂ = (θ̂ (I ),  ̂ )  and σ̂ 2(I ) = S (θ̂ (I ),  ̂ )/n  are the 

maximum likelihood estimates. When = 0 , the maximum likelihood estimates are 

φ 0 = (θ̂, 0 )  and σ̂ 2 = S (θ̂,  0 )/n , which are the maximum likelihood estimates of 

model (2.1)

Let e  be the n-dimensional ordinary residual vector, e = y− f (X,  θ̂ ) . We 

define y I ,  I , and e I  to be m-dimensional vectors whose j-th elements are yij , 

ij , and eij , respectively, and X I  to be an m q  matrix whose j-th row is x Tij
. 

Also we define y (I ) ,  (I ) , and e (I )  to be vectors y , , and e , respectively, with 

cases indexed by I  deleted and X (I )  be matrix with rows indexed by I  deleted. 

Least squares estimation of the parameter  will give a value of zero for the 

residuals indexed by I  in model (2.2). This means that the observations indexed 

by I  will make no contribution to estimate θ , and thus the least squares estimate 

of θ  in model (2.2) is the same as that in the deletion model,

y (I ) = f(X (I ),  θ ) +  (I ) .        (2.4)

The resulting estimates of θ  from (2.4) or from (2.2) will be called θ̂ (I ) , from 

which it is immediate that ˆ = y I − f (X I ,  θ̂ (I ) ) .

The testing of the hypothesis = 0  is equivalent to testing whether the set I  

of m  cases are outliers. Thus outlier identification and testing are formally 

equivalent to solving and testing a subset regression. The likelihood ratio test 

statistic for testing Ho :  =0  against H1 :  = 0  is

                       LR  = 2 [  L (φ̂ ) − L (φ 0 )]

 = n  [  log S (θ̂, 0 ) −  log S (θ̂ (I ), ˆ )] .                (2.5)
 

3. Asymptotic Properties

Under the standard nonlinear regression model (2.1), Seber and Wild(1989, pp. 

577-581) prove that the asymptotic distribution of the likelihood ratio statistic for 

the null hypothesis that satisfies a set of constraints is the chi-square distribution 

under appropriate regularity conditions (Serfling, 1980, p. 154; Amemiya, 1983. p. 

351). They assume that θ̂  and the maximum likelihood estimate of θ  under the 

null hypothesis are asymptotically normal, and that A  is positive definite in the 
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neighborhood of θ * , the true value of θ , where A=− ∂2L (θ )/∂θ ∂θ T  . 

To prove that the asymptotic distribution of LR  in (2.5) is chi-square, it is 

enough to show that the above two conditions hold in the mean shift outlier 

model (2.2) assuming that these conditions are satisfied in the standard nonlinear 

regression model (2.1). Specifically, the two conditions required are:

Condition 1 :   θ̂ (I )  and ˆ  are asymptotically normal.

Condition 2 :  M  is positive definite in the neighborhood of φ * ,

where M=− ∂2L/∂φ∂φ T , φ = (θ,  ) , and φ * = (θ *,  )  is the true φ .

Condition 1 is satisfied and can be proved as follows. The maximum likelihood 

estimate ˆ  is defined to be y I − f (X I  ,  θ̂ (I ) )  and can be rewritten as:

ˆ = [y I − f (X I   ,  θ 
* )] + [f(X I   ,  θ 

* ) − f(X I   ,  θ̂ (I ) )]

= [  I + ] + [f(X I   ,  θ 
* ) − f (X I   ,  θ̂ (I ) )].

Jennrich(1969) and Wu(1981) show that θ̂  is asymptotically normal and 

converges to θ *  almost surely. For fixed m, this implies that θ̂ (I )  is 

asymptotically normal and converges to θ *  almost surely, and that  

f (X I  ,  θ * ) − f (X I  ,  θ̂ (I ) )  converges to zero almost surely from continuity of f  

as long as the regularity conditions for θ̂  estimated with data (X,  y )  apply to 

estimating from (X (I ),  y (I ) )  as well. Thus, ˆ  is the sum of two independent 

terms  I +  which is normal, and a second term that is asymptotically normal.

For condition 2, we have 

−
∂2L

∂φ∂φ T
=

                    

−
∂2L (θ, )

∂θ∂θ T
−

∂2L (θ, )

∂θ∂  T

−
∂2L ( , )

∂ ∂θ T
−

∂2L (θ, )

∂ ∂  T

,

where each of the derivatives is given by

∂2L (θ, )

∂θ∂θ T
=−

1

σ2















∂f

∂θ T

T







∂f

∂θ T
−







∂2f

∂θ∂θ T
  ( )y− f(X, θ ) − D 

∂2L (θ, )

∂θ∂  T
=−

1

σ2








∂f

∂θ T

T

 D

∂2L ( , )

∂θ∂  T
=−

1

σ2
 D T D=−

1

σ2
 I m .
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Now, M  can be written as

M  =
       
M 11   M 12

M 21   M 22
=

1

σ2

               

V *TV * − Σ
i = 1

n

iW *i V *TD

D TV * I m

 ,

where V * = V(θ * )  and W *i = W i (θ 
* )  are ∂f/∂θ T  and ∂f (x i,  θ )/∂θ ∂θ T  

evaluated in the neighborhood of θ * , respectively. To show that M  is positive 

definite is equivalent to proving that all pivots of M  are positive. Since we 

assume that the upper left sub-matrix, M 11 , is positive definite, the first p  pivots 

are positive. The determinant of M  can be written as

det (M ) = (σ2 )− (p + m)  det (M 22 )  det (M 11 −M 12M − 1
22 M 21 )

= (σ2 )− (p + m)  det (V *TV *−∑ iW *i −V *T
I V *I )

= (σ2 )− (p + m)  det (V *T
(I)V *(I) −∑ iW *i ).

Let M k  be the (p + k ) (p + k )  upper left sub-matrix of M  for k = 1, ,m . 

The determinant of M k  can be written as:

det (M k ) = (σ2 )− (p + k )  det (V *T
(J)V *(J) − Σ

i = 1

n

iW
*
i )   for J= (i1, , ik ) .

We can calculate the (p + k )-th pivot ck  as a ratio of two determinants:

ck =
det (M k )

det (M k − 1 )
  for  k = 1, ,m ,

where M 0 = M 11 .  Because M 11  has a positive determinant, all ck  are positive if 

all determinants of M k  are positive. Thus condition 2 is satisfied if the following 

condition holds:

det (V *T
(J)V *(J) − Σ

i = 1

n

iW *i ) > 0 for  J I.    (3.1)

Therefore, this condition (3.1) should be added to the conditions required to get 

asymptotic distributions. This leads to the following.

Significant levels of likelihood ratio tests can be found either from the 

asymptotic distribution of LR , which is the chi-square distribution with m  

degrees of freedom or by an F-approximation (Gallant, 1987, p. 57; Seber and 

Wild, 1989, p. 198),



Myung-Wook Kahng210

FLR =
[S (θ̂, 0 ) − S (θ̂ (I ) , ˆ )]/m

S (θ̂ (I ) , ˆ )/ (n − p − m )
    (3.2)

which is approximately distributed as the F-distribution with m  numerator 

degrees of freedom and n − p − m  denominator degrees of freedom when H0  is 

true.

4. Remarks

In practice, we usually do not have a priori knowledge of the suspected cases, 

thus the procedure based on the first Bonferroni inequality (Miller, 1966) should be 

used to find the significant levels of outlier tests in (2.5) and (3.2). Under this 

procedure, we use the following rejection rule;  max LR > χ2
α/l (m,n− p − m)  or

 max F > Fα/l (m, n− p − m ) , where l = 





m
n , χ

2
α(m )  is the upper α point of the 

chi-square distribution with m  degrees of freedom and Fα (m, n− p − m )  is the 

upper α  point of the F-distribution with m  and n − p − m  degrees of freedom.

In linear the regression model, y = X θ + , after deletion of m  observations 

the effect on the residual sum of squares can be written as (see Cook and 

Weisberg, 1982, p.19; Atkinson, 1985, p. 21)

S (θ̂ (I ), ˆ ) − S (θ̂,  0 ) =  − e TI (I m − H I )
− 1e I  ,   (4.1)

where H I  is the m m  minor of H = X (X TX )TX T  with rows and columns 

indexed by I . Using (4.1) we can rewrite (2.5) and (3.2) as 

LR = n  log 
(n− p )s 2

(n− p )s 2 − e TI (I m −H i )
− 1e

 (4.2)

and

FLR =
(n− p − m )[ ]e TI (I m −H i )

− 1e

m [ ](n− p )s 2 − e TI (I m −H i )
− 1e

. (4.3)

Since all quantities in (4.2) and (4.3) can be calculated from the fit for all n  

observations we can calculate test statistics LR  and FLR  without refitting the 

deletion model. However, in nonlinear models, (4.1) does not hold exactly. We need 

to refit the deletion model to find the test statistics LR  in (2.5) and FLR  in (3.2).
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