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ABSTRACT

Given the specific mean shift outlier model, several standard ap-
proaches to obtaining test statistic for outliers are discussed. Each of
these is developed in detail for the nonlinear regression model, and each
leads to an equivalent distribution. The geometric interpretations of the
statistics and accuracy of linear approximation are also presented.

KEYWORDS: Outlier, Mean shift outlier model, Likelihood ratio test,
Wald test, Score test, Curvature.

1. INTRODUCTION

In this article, we consider the problem of testing for multiple outliers in
nonlinear regression. We proceed by first specifying a mean shift outlier model,
assumning the suspect set of outliers is known. Given this model, several stan-

dard approaches to obtaining test statistics for outliers are discussed. These
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include likelihood ratio tests, Wald tests, and score tests. Each of these is
developed in detail for the nonlinear regression model.

In the linear regression model, various statistical tests have been proposed
for detecting and rejecting outliers by Anscombe (1960), Anscombe and Tukey
(1963), Rosner (1975), and others. Examples of these tests and other relative
references can be found in Beckman and Cook (1983).

Bates and Watts (1980) propose measures of intrinsic and parameter-effects
curvatures for assessing the adequacy of the linear approximation. Relatively
small values for both the maximum intrinsic curvature and the maximum
parameter-effects curvature indicate that the linear approximation is reason-
able. This procedure applies only to full parameters. Cook and Goldberg
(1986) extend this idea to develop curvature measures for an arbitrary pa-
rameter subset, and is used here to assess the validity of linearization-based

test.

2. OUTLIERS IN NONLINEAR REGRESSION

The standard nonlinear regression model can be expressed as
y; = f(2i,0) + €&, 1=12,...,n,

in which the i-th response y; is related to the g-dimensional vector of known
explanatory variable @; through the known model function f, which depends
on p-dimensional unknown parameter vector 6, and ¢; is error. We assume
that f is twice continuously differentiable in 8, and errors ¢; are independent,
identically distributed normal random variables with mean 0 and variance o?.

In matrix notation we may write,

Y = f(X,0) +¢, (2.1)
where Y is an n-dimensional vector with elements y1,y2,...,¥s, X 15an n X ¢
matrix with rows #7, @7 ,..., &I, € is an n-dimensional vector with elements

61,60, en, and F(X,0) = (f(21,8), f(=2,0),..., f(xn,0))".
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Suppose we suspect in advance that m cases indexed by an m-dimensional
vector I = (21,13,...,%m), are outliers. It can be helpful to write the mode] as

{yi:f(wiae)‘i"&{‘l‘fi, foriel
yi = f(z:,0) + ¢, foreg I’

which is called the mean shift outlier model. In matrix notation we may write,
Y = f(X,0)+ D6 + ¢, (2.2)

where § = (8i1,6i3,...,6in)", and D = (dy,dy, ..., dy), and d; is the i,-th
standard basis vector for R".
We denote the log-likelihood for model (2.2) by L(8,8,0?%) and obtain

L(6,6,6%) =~ logo® - %ﬁ(y — £(X,8) - D8T(Y — f(X,8) - D6)

= logo? — —5(8,8), (2.3)
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where 5(6,68) = (Y - f(X,0) — D§)T(Y — f(X,0) — D$§). Given o2, (2.3)
is maximized with respect to ¢ = (6,8) when S(8,6) is minimized at the
least squares estimates ¢ = (é(,),S). Furthermore, 0L/d0? = 0 has solution
o? = 5(8,8)/n, which gives a maximum for given ¢ as the second derivative
is negative. This suggests that ¢ = (9(1),3) and &(21) = 5'(9(1),5)/n are the
maximum likelihood estimates. When § = 0, the maximum likelihood esti-
mates are ¢, = (0,0) and 62 = 5(8, 0)/n, which are the maximum likelihood
estimates of model (2.1).

Let e be the n-dimensional ordinary residual vector, e = Y — f(X,é)
We define Y, €7, and e to be m-vectors whose J-th elements are, Yijy €ijy
and e;;, respectively, and X to be an m X p matrix whose j-th row is ;7.
Also we define Y (), €(7), and e to be vectors Y, €, and e, respectively,
with cases indexed by I deleted and X (1) to be matrix X with rows indexed
by I deleted. Least squares estimation of the parameter § will give a value
of zero for the residuals indexed by I in the model (2.2). This means that

the observations indexed by I will make no contribution to estimafe @, and
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thus the least squares estimate of @ in model (2.2) is the same as that in the

deletion model,

Yo = f(X1,0) + e (2.4)

The resulting estimates of 6 from (2.4) will be called 9(1) from which it is
immediate that 6 = Y7 — £(X1,0(1).

The testing of the hypothesis § = 0 is equivalent to testing whether m
cases in the set I are outliers. In the next section, we consider procedures for
testing Ho : § = O against H; : § # 0.

3. OUTLIER TEST

3.1 Likelihood Ratio Test

The likelihood ratio statistic was introduced by Neyman and Pearson (1928).
Let p(Y|8, 8, 02) be the likelihood function for model (2.2). For this particular
hypothesis this statistic is given by

sup p(Y'6,0,0?%)
02

sup p(Y9,8,0%)

0,6,02

A=

with small value of A providing evidence against the null hypothesis. Letting
L(¢) be the log-likelihood evaluated at ¢, we write

LR = -2 log(A)
= 2[L(¢) — L(e)]
= n[log S(8,0) —log S(8(1),8) .

Significance level of likelihood ratio tests can be found from the asymptotic

distribution of LR, which is the chi-square distribution with m degrees of
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freedom denoted as x%(m) or by F-approximation (Gallant, 1987, p. 57; Seber
and Wild, 1989, p. 198),

[5(8,0) — 5(6(1),8) l/m
5(0(n,6)/(n —p—m)

which is approximately distributed as the F-distribution with m and n—p—-m

LR =

3

degrees of freedom denoted as F(m,n — p — m) when Hy is true.

In practice, we usually do not have a prior knowledge of the suspected
cases, thus the procedure based on the first Bonferroni inequality (Miller, 1981)
should be used to find the significance level of tests. Under this procedure,
we use the following rejection rule: max LR > Xi/l(m) or max Frp >
FZ,(m,n ~ p —m), where | = (;), x2(m) is the upper a point of the chi-
square distribution with m degrees of freedom, and Fg/,(m, n—p—m) is the
upper « point of F-distribution with m and n — p — m degrees of freedom.
These Bonferroni-type bounds can be useful for small data sets or for situations
where only few tests need to be examined, but these critical values are likely
to be very conservative. The significance methods developed by Andrews and
Pregibon (1978) could also be used, however, they do not provide much help

when there are more than 30 observations.
3.2 Wald Test

A second test statistic for the test § = 0 was proposed by Wald(1943) and
is given by,

WD =8 [Var(8)]18.

Given €; are i.i.d. N(0,0?) and under appropriate regularity conditions, we

have asymptotically ¢ ~ N(¢,0*B™") (Seber and Wild, 1989, p. 24), where

B_ Q;f_ T a—f _ Bll Bl2
-\ 9%ls-g) \9lpp)

and V = V(()(I)), which is 9f/067 evaluated at 9(1). Partitioning ¢ = (0, §)
and ¢ = (9(1),5), we have § ~ N(8,0%(B)y,), approximately. Using the

V'V VD

3

DTV DTD By, By,
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usual rule to calculate the inverse of a partitioned matrix, we have

By = (Bs— BB Bi)™
— (I.- DIV(V' V)V D)
= (Im - ﬁI)-l,
where H is the m x m minor of H = 7(VTV)‘1VT with rows and columns

indexed by I.

The variance of & is given by

Var($) = o*(I — H;)™,

and Var(s) can be estimated by replacing o? by 6(21). Now the Wald test for
the hypothesis § = 0 is

1 .1 —_— L a
&

o)

Like the likelihood ratio test, significance level of the Wald test can be found
from the asymptotic distribution of WD, which is x*(m) under appropriate
regularity conditions or by F-approximation (Gallant, 1987, p. 48; Seber and
Wild, 1989, p. 198),

1
msQ(I)

T —_ A
Fwp = 6 (I — Hpé,
which is approximately distributed as F'(m,n — p — m) when Hy is true, where
sty = S(é(l),s)/(n — p — m). When the suspected cases for outliers are
unknown, the Bonferroni significance level should be used to carry out the
above test. Since V depends on 9(1), a separate fitting of the deletion model

for each set [ is necessary to calculate W D.
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3.3 Score Test

The score test is a widely applicable method of test construction that pro-
vides a convenient alternative to the likelihood ratio test. The score statistic,
due originally to Rao(1947) and developed further by Silvey(1959) is

S = U(¢0)TI(¢0)—1U(¢O)’

where
_ AL(¢) _ __0L(@)
U(¢) = — = 5 nd I(9) = BI(¢)) = —E[a¢ 6¢T]’

The score statistic for the test § = 0, considered by Kahng (1993), is given

by, .
S=—e (I, — Hy) ey,

o2

where H is the m x m minor of H = V(";TV)”V\T with rows and columns
indexed by I, V = V(0) is 0f/067 evaluated at 8. The asymptotic distri-
bution of S is x*(m) under appropriate regularity conditions. Also we have
F-approximation (Gallant, 1987, p. 87; Seber and Wild, 1989, p. 198),

(n—p-—m)le;T (I, — Hy) e

Fs = = 5
m [(n — p)s? — e/T(I,, — H)le/]

which has F(m,n — p — m) distribution approximately, where s? = 5(8, 0)/(n—
p). Again, the Bonferroni significance level should be used to carry out this
test if the suspected cases are unknown.

The previous two tests are based on the maximum likelihood estimate,

~ A

¢ = (8(1), 6) that require refitting of the nonlinear regression model (:1) times
when the location of outliers is unknown. However, the score test does not

require the knowledge of the maximum likelihood estimate .
3.4 Comparison of Test Statistics

The likelihood ratio statistic compares the height of the likelihood. at & and
@o. The Wald test statistic compares (Ab to its standard error. The score test
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statistic compares the derivatives of the log-likelihood of ¢, to its standard

error.

Buse (1982) suggests a simple diagram to compare these three statistics.
Suppose that the vector § consists of only one element. If we now plot the
log-likelihood function, then the value of %LR can be read directly from Fig-
ure 1. In this figure we note that the distance ZLR depends on the distance
§(= 6 —6y) and the curvature of the log-likelihood function. Instead of consid-
ering the difference in log-likelihood, the Wald test takes the squared distance
between 6 and 8o(= 0) weighted by the curvature of the log-likelihood function
evaluated at 6. This curvature is identical to the curvature of the quadratic
approximation of the log-likelihood whose first and second derivatives are the
same as those of the log-likelihood at 5. This is illustrated in Figure 2. The
score test takes the squared departure of the slope of the log-likelihood func-
tion evaluated at & from the slope evaluated at 3, which is zero, weighted by
the inverse of the curvature evaluated at §. This curvature is identical to the
curvature of the quadratic approximation of the log-likelihood whose first and
second derivatives are the same as those of the log-likelihood at éo, not at 5.

This is illustrated in Figure 3.

If the log-likelihood function is exactly quadratic, which 1s the linear case,
the log-likelihood function and the two quadratic approximations are identical.
In this case, the inequality W > LR > SC holds. This ordering was first
established by Berndt and Savin (1977). Although this inequality no longer
holds for nonlinear models, Mizon (1977) found that W > LR most of the

time in his samples.

The three statistics differ in computational features. Unlike the other two
tests, the score test requires only quantities calculated under the null hypothe-
sis. Nevertheless, all three statistics are invariant under the reparametrization
of @, and have the same asymptotic distribution under the null hypothesis
Hy:6=0.
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4. ACCURACY OF LINEAR APPROXIMATION

In Section 3 we presented three standard approaches to obtaining test
statistics for outliers. One of the tests based on the linear approximation,
namely the score test, is easy to calculate, but can be quite different from like-
lihood ratio tests. In this section, the accuracy of the test, in which the test

is based on a linear approximation, is investigated using curvature measures.

4.1 Curvatures

We begin with the standard nonlinear model (2.1). Suppose 8 is close to
8, then we have the following quadratic Taylor expansion:

J—

F(X.0) ~ f(X,é)—i—/Vn-}—%nTWn, (4.1)

where k = 8 — 8 and W = W(8) is 02f/00067 evaluated at 8. If we ignore
the quadratic term, we have the linear approximation for € in the vicinity of

A

6
f(X,0)~ f(X,0)+ V&, (4.2)

This linear approximation amounts to approximating the expectation sur-
face in the neighborhood of 6 by the tangent plane at 6. An important as-
sumption used in this method is that the expectation surface is flat, so that
the tangent plane provides an accurate approximation.

The validity of the linear approximation (4-2) will depend on the magnitude
of the quadratic term k7 Wk in (4-1) relative to the linear term V k. To make
this comparison Bates and Watts(1980, 1981) split the quadratic term into two
orthogonal components, projections onto the tangent plane and normal to the
tangent plane. They define two measures for comparing each quadratic compo-
nent with the linear term, namely the maximum parameter-effects curvatures

and the maximum intrinsic curvatures.
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4.2 Subset Curvatures

We next turn to the parameter subsets. Consider the partition 8 = (61,8>)
where 8; is p; x 1(¢ = 1,2) and p; + p» = p. Suppose that 6, is the parameter
subset of interest.

Let mg (02) = 6,(8,) be the p;-dimensional vector-valued function that
minimizes S(6) over @ for 8, fixed and let Tg _and g be the first and second
partial derivatives, respectively, of 01(02) with respect to 8, evaulated at 6,,
and define h(8;) = f(X,60,(0,),0,). With these definitions the quadratic

approximation of h(8;) about 6 can be written as

N 1 ST <. 1l .
h(62) ~ £(X,0)+ Vg, ks + 5wy 1y Wrng, ka5 V (2 ving, 2), (43)

2
where kK, = (02 — 8,). Cook and Goldberg (1986) show that the linear part
of the above equation describes the plane tangent to h at 6, and can be

reexpressed as

h(6-) z.f(X,é)"‘(In—I/‘jl)/‘?2"32, (4.4)

where V, = V() and V, = V() are 8f/06T and 0f /06 evaluated at 6,
respectively, and H; = ?l(?fﬁl)-ﬁ?f

The validity of (4.4) depends on the magnitude of the quadratic terms in
(4.3) relative to the linear term. The global curvature measures may not be
relevant in this case, because they measure the worst possible curvatures in
any direction from 0. To assess the adequacy of the linear approximation
(4.4) we need the subset parameter-effects and intrinsic curvatures which were
developed by Cook and Goldberg (1986). The following discussion is based on

their work.
4.3 Subset Curvatures for é

We consider the mean shift outlier model (2.2). Since parameter 8 is the
parameter subset of this model, the subset curvatures for § can be found by
the methods described in Section 4.2.
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Let h(8) = f(X,mg(6)) + D6, where myg(8) = (61(8),0:(8),...,0,(8))
denotes the p-dimensional vector-valued function that maximizes L(8,6) over
0 for given §, that is, mg(d) represents that value § that minimizes S(6, §)
for each value of §. Following Bates and Watts (1980), and Cook and Goldberg
(1986), we assume that the intrinsic curvature of h at b is negligible. If the
intrinsic curvature is zero, then the expectation surface and tangent plane are
identical and h(8) is a curve in this plane. The intrinsic curvature should be
calculated to check this assumption, however, experiment has shown that they
are typically small.

To obtain precise expressions, we need the following definitions. Define
n x p matrix V = V(é(,-)) and n X p X p array W = W(ém). We consider
the QR decomposition of n x (p + m) matrix V¢, namely

of

V=7

8¢T —(v,D):QR,

¢=¢

where @ is an n x (p + m) matrix with orthogonal columns and R is a (p +

m) x (p + m) upper triangular matrix. Now partition @, R and R™! as

Q= [Ql Q?]a
r-Rll R12

R = ,
| 0 R22

[Rii™' (R )i Rii™' =Ry 'RipRy™!

R =

i 0 Rgz—l 0 R22—1

where Q, isn X p, Qyisn X m, Ry; is p X p, Ri3 is p X m, and Ry, is m x m.
Consider the transformation W¢ = R"TW(;[)R_I, where the i-th face of W¢

18

8%hy 82%h; A7
W = O 2058”5006 w. o
@)= 2™ | 4 _ 4 T | o 8%h; | . ’
¢=¢ 36307  2608" 41(6.6)=(8,,).6) 0 0
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W, is the i-th face of W, and h; is the i-th element of h(§). Then the -th

face of W¢ can be expressed as

R;T 0 W;: 0] [Ru™" (R M

(VVV¢),~ =

L (R_l)1T2 Rng 0 O 0 Ry,™!

R;lTWiR;ll RflTWi(R_l )12

_(R_l)fzwiRﬁl (R—l){zwi(R_l)IZ
[ (Wq.')u)i (W(]f)u)i

L (qun)i (quzz)i

’

where (qujk)i is the i-th face of W¢jk.
Under the above settings and by applying the result of Cook and Goldberg
(1986), we may define the maximum parameter-effects and intrinsic curvatures

of h at & as

L7 (6) =+/m s max |]bT[PQ2][W¢22]bH

1b]|=1
= \/m 8([) Hl’;)lléll_)__(l ll bT A22 b ” (45)

and

r7(6) =2ym s ma H[bTQf][v”qum]b”

|[bj=1
= 2v/m s ”IilleiL:l ” (6T ][ A12]b H , (4.6)

where A is the (p+m) x (p+m) x (p+ m) parameter-effects curvature array
A= [QT][Wd)] (Bates and Watts, 1981), Ay, and Aj; are the sub-arrays of
A with i-th faces A;2, A2, 2 =p+1,...,p+m.
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Combining the two subset curvatures, the total curvature I';(§) of h at )

18

) N 1/2
T.(8) = Vim sy max (o7 asab] + 47 1Ap) . a7

Cook and Goldberg (1986) noted that in terms of the geometric interpreta-
tion by Bates and Watts (1981) the intrinsic subset curvature depends only on
the fanning and torsion components of A and not on the compansion and arc-
ing components. If ['y(8) (or both T'7 (§) and T'7(8)) is sufficiently small, the
likelihood and linear confidence regions for § will be similar, otherwise we can
expect these confidence regions to be dissimilar. Following Ratkowsky (1983,
p. 18) and Cook and Goldberg (1986), 1/(2\/Fa(m, n — p —m)) may be used

as a rough guide for judging the size of these curvatures. This method can

be used to judge the adequacy of the test procedures which are based on the
linear approximation. When I',(6) is greater than the guide, the linearization
based test, namely the score test, is quite different from likelihood ratio tests.

5. EXAMPLE

To illustrate the results of Sections 3 and 4, we present a numerical example
using the data and model taken from Ratkowsky (1983, p. 88). The data
examines the water content of bean root cells as a function of the distance

from tip in 15 cases. The proposed model is the Gompertz model,
f(zi,8) = 6, exp(— exp(f2 — 03z:)).

First we assume that we have a single outlier (m = 1) with location un-
known. For each of the three test procedures, we calculate outlier test statistics
for each case. Figure 4(a) shows the pairwise plot of three statisitcs, LR, WD,
and S. This plot shows that the relationship between LR, WD, and S are
close to linear and the order of 15 values are the same for all three procedures,

which implies that we can use any procedure to get the location that has the
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largest test statistic. Next, we assume that there are two outliers (m = 2)
and calculate 105 test statistics for each pair from 15 locations. The pairwise
plot is shown in Figure 4(b). In this plot we have unusual points which rep-
resent the subset of cases 4 and 5. This indicates the disagreement between
the test statistic based on likelihood and that on linear approximation. In
this example, this does not cause serious problems in finding the most likely
outlying cases since this subset has small values of LR, WD, and S, however,
if the disagreement occurs at large values of statistics, WD and S may give
misleading results.

The subset curvatures for § are listed in Table 1(a) for a single outlier case.
The corresponding guide is 1/(2y/Fos(1,11)) = .2272. The subset curvatures
in Table 1(a) are all quite small compared to the guide, indicating reasonable
agreement between the test statistic based on the likelihood and that on linear
approximation. Also, we calculate the subset curvatures for each of the 105
pairs from 15 locations and the 10 largest total subset curvatures for é are
listed in Table 1(b). The corresponding guide is 1/(2/Fos(2,10)) = .2468.
For the subset with locations 4 and 5, the subset curvature measure exceeds
the guide, indicating inadequacy of the linear approximation. These results

agree with the findings in the previous paragraph.

6. REMARKS

The quantities in formulas (4.5), (4.6) and (4.7) can be found or estimated
without knowing the response, Y, of the case which is suspected to be an
outlier. This implies that the curvature measures, I'7 (§), T'7(§), and T',(8),
do not depend on how large § is or how severe the outliers are. We may have
larger curvature measures for § even if the cases that are being tested have
small test statistics.

One problem that has not yet been solved is the following. If the curvature
measures (4.5), (4.6) and (4.7) can be found from a fit of the full data set, we

can assess the accuracy of the linear approximation based outlier test for each
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subset of size m prior to fitting all deletion models. Then we can use tests based
on the linear approximation, such as the score test, for the subsets in which
the linear approximation is valid. This substantially reduces the computational
cost for detecting outliers. Thus, it is desirable to express curvature measures
as a function of the full set of data, as is usual in this kind of an investigation.
However, it is not easy to get this expression in nonlinear regression because
V= V(()(I)) and W = W(ém) change when cases are deleted.

Table 1. Subset Curvatures for é§

(a) m=1 (b) m=2
I I7(6) TN T,(6) I L7(6) TU(8) T, (6)
3 0.0140 0.0699 0.0713 i, 5 09278 02615 0.3468
5 0.0158 0.0613 0.0633 3, 4 0.0955 0.2254 0.2448
15  0.0103 0.0386 0.0400 3, 5 01025 0.1067 0.1480
4 0.0079 0.0348 0.0357 2,3 0.0286 0.1345 0.1375
9 0.0023 0.0284 0.0285 14,15 0.0529 0.1150 0.1266
7 0.0038 0.0246 0.0249 59 0.0362 0.1162 0.1217
6  0.0012 0.0244 0.0244 9,5  0.0516 0.1093 0.1209
8  0.0028 0.0171 0.0173 3,10  0.0290 0.1136 0.1172
9 0.0003 0.0124 0.0124 5 6  0.0298 0.1133 0.1172
10 0.0010 0.0121 0.0121 3, 9 0.0308 0.1118 0.1160
14 0.0021 0.0110 0.0112 e
11 0.0001 0.0054 0.0054 12 Fos(2,10)) = 2468
1 0.0000 0.0027 0.0027
12 0.0000 0.0027 0.0027
13 0.0001 0.0026 0.0026

1/(2/Fos(1,11)) = .2272
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Figure 1. Likelihood Ratio Test.
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Figure 2. Wald Test.
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Figure 3. Score Test.
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Figure 4. Pairwise Plots of Three Test Statistics.
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