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Abstract
We consider some statistical properties of the first order difference-based error variance estimator in non-

parametric regression models with a single outlier. So far under an outlier(s) such difference-based estimators
has been rarely discussed. We propose the first order difference-based estimator using the leave-one-out method
to detect a single outlier and simulate the outlier detection in a nonparametric regression model with the single
outlier. Moreover, the outlier detection works well. The results are promising even in nonparametric regression
models with many outliers using some difference based estimators.

Keywords: First order difference-based error variance estimator, leave-one-out, Lipschitz condi-
tion, Single outlier.

1. Introduction

There are two types of estimating an error variance in nonparametric regression models. One is that
the residual sum of squares method first estimates a regression curve (Wahba, 1990; Hall and Carroll,
1989; Carter and Eagleson, 1992; Neumann, 1994). The other is that the estimation of the error
variance which uses differences to remove trend in the regression curve has attracted a great deal of
attention; see for example Rice (1984), Gasser et al. (1986), Hall et al. (1990), Dette et al. (1998),
and Tong and Wang (2005), among others.

Robust nonparametric regression estimators are widely used when these models with a single
outlier(s) are fitted (Boente and Fraiman, 1989). Meanwhile, such difference-based estimators which
have been rarely discussed under the outlier problems have the advantages of no fitting a regression
curve, fast convergence rate and computational convenience (Dette et al., 1998). However, they do
not perform well in the presence of outliers.

We investigate some statistical properties of the first order difference-based error variance in a
nonparametric regression model with a single outlier. To detect the outlier, we propose the first order
difference-based estimators using the leave-one-out method and their statistical properties are derived.

The rest of the paper is organized as follows. In Section 2, we introduce the nonparametric re-
gression models with a single outlier and the first order difference-based error variance estimator. In
Section 3, we propose the first order difference-based estimator using the leave-one-out method and
derive some statistical properties on the outlier detection problem. In Section 4, we conduct a sim-
ulation study to observe the behavior of the first order difference-based estimator in some unknown
regression curve with a single outlier under finite sample performance. Section 5 provides conclusion
and further working. And finally, technical proofs are collected in the Appendix.

1 Assistant Professor, Department of Mathematics, Kyonggi University, Gyeonggi-do 443-760, Korea.
E-mail: cgpark@kgu.ac.kr



334 Chun Gun Park

2. First Order Difference-Based Error Variance Estimator

2.1. Nonparametric regression models with a single outlier

In this paper we consider a particular aspect of some statistical properties for the first order difference-
based error variance estimator in nonparametric regression models with a single outlier under a finite
sample size.

The most basic form of our model without the outlier is

Wi = g(xi) + ϵi, i = 1, . . . , n, (2.1)

where g is an unknown regression curve and the error ϵi’s are i.i.d. random noise with distribution
F(·).

The most basic form of our model with the single outlier is

Yi =


g(xi) + ϵi, i = 1, . . . , t − 1,
g(xi) + ϵi + δ, i = t,
g(xi) + ϵi, i = t + 1, . . . , n,

(2.2)

where δ is a constant.

2.2. First order difference-based variance estimator

We investigate some statistical properties of the first order difference-based estimator under the fol-
lowing assumptions:

(A1) The regression curve g : [0, 1]→ R is Lipschitz continuous, that is, there exits a constant c such
that |g(x) − g(y)| ≤ c|x − y| for any x, y ∈ [0, 1].

(A2) The fixed design points are xi = i/n, i = 1, . . . , n.

Rice (1984) proposed the first order difference-based estimator

σ̂2
R =

1
2(n − 1)

n∑
i=2

(Yi − Yi−1)2.

All results are summarized under |g(x j) − g(xi)| = ci( j−i)(i/n) for 1 ≤ i < j ≤ n. In details, see Park
(2011).

Theorem 1. Some statistical properties of the first order difference-based estimator are the follow-
ing;

(i) from (2.1), that is, without a single outlier

� E
(
σ̂2

R

)
= σ2 +

1
2n2(n − 1)

n∑
i=2

c2
i(1)

� Var
(
σ̂2

R

)
=

2σ2

n2(n − 1)2

 n∑
i=2

c2
i(1) −

n−1∑
i=2

ci(1)ci+1(1)

 + 2σ4 tr(D2)
tr(D)2

(ii) from (2.2), that is, with a single outlier for 1 < t < n − 1
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�
(
σ̂2

O

)
= σ2 +

1
2n2(n − 1)

n∑
i=2

c2
i(1) + Rt(δ)

� Var
(
σ̂2

O

)
=

2σ2

n2(n − 1)2

 n∑
i=2

d2
i(1) −

n−1∑
i=2

di(1)di+1(1)

 + 2σ4 tr(D2)
tr(D)2 ,

where Rt(δ) = δ/{n(n − 1)} (ct(1) − ct+1(1)) + δ2/(n − 1),

di(1) =


ci(1) + nδ, i = t,
ci(1) − nδ, i = t + 1,
ci(1), i = 2, . . . , t − 1, t + 2, . . . , n,

and D = D̃T D̃

D̃ =


−1 0 1 0 · · · 0
...

. . .
...

. . .
...

...
0 · · · 0 −1 0 1

 ∈ R(n−1)×n.

If ct(1) = ct+1(1), that is, g(x) is a linear function, then Rt(δ) = δ2/(n − 1). In the cases of a
regression curve which is nonlinear, the expectation of the estimator consists of three parts (1) the
error variance (2) the biased term and (3) the effect term of the outlier. In particular, the error variance
and the biased term should be affected by the shape of the regression curve exit under the model
(2.1), however, the effect of the outlier which exits under the model (2.2) depends on the sign and the
magnitude of the outlier.

3. First Order Difference-Based Variance Estimator Using a the leave-one-out
method

From (ii) of Theorem 1 the estimator has a biased term and the effect of the outlier. To estimate the
error variance, in advance the outlier detection problem should be dealt with. To do this, we propose
the first order difference-based estimator using the leave-one-out method.

Theorem 2. From (2.2) and assuming that the single outlier is the tth observation, Yt for 1 < t < n,
some statistical properties of the first order difference-based estimator using the leave-one-out method
are as follows;

(i) If the tth observation which is an outlier is removed, then

� E
(

(−t)σ̂
2
O

)
= σ2 +

1
2n2(n − 2)

n∑
i=2

c2
i(1) +

ct(1)ct+1(1)

n2(n − 2)
,

� Var
(

(−t)σ̂
2
O

)
=

2σ2

n2(n − 1)2

 n∑
i=2

d2
i(1) −

n−1∑
i=2

di(1)di+1(1)

 + 2σ4 tr(B2)
tr(B)2 ,

where

di(1) =


ci(1) + ci+1(1), i = t,
ci(1) + ci−1(1), i = t + 1,
ci(1), i = 2, . . . , t − 1, t + 2, . . . , n.
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(ii) If the kth (1 < k < t) observation removed is not the outlier, then

� E
(

(−k)σ̂
2
O

)
= σ2 +

1
2n2(n − 2)

n∑
i=2

c2
i(1) +

ck(1)ck+1(1)

n2(n − 2)
+ Rk(δ),

� Var
(

(−k)σ̂
2
O

)
=

2σ2

n2(n − 1)2

 n∑
i=2

d2
i(1) −

n−1∑
i=2

di(1)di+1(1)

 + 2σ4 tr(B2)
tr(B)2 ,

where

Rk(δ) =
δ

n(n − 2)
(
ct(1) − ct+1(1)

)
+

δ2

n − 2
,

di(1) =


ci(1), i = 2, . . . , k − 1, k + 2, . . . , n,
ci(1) + ci+1(1), i = k,
ci−1(1) − ci(1), i = k + 1,
ci(1) + nδ, i = t, t + 1

and B = B̃T B̃

B̃ =


−1 0 1 0 · · · 0
...

. . .
...

. . .
...

...
0 · · · 0 −1 0 1

 ∈ R(n−2)×(n−1).

(iii) From (ii) of Theorem 1, let compare the estimators. Then

� E
(
σ̂2

O

)
− E

(
(−t)σ̂

2
O

)
≈ Rt(δ)

=
δ

n(n − 1)
(
ct(1) − ct+1(1)

)
+

δ2

n − 1
,

� E
(
σ̂2

O

)
− E

(
(−k)σ̂

2
O

)
≈ −

ck(1)ck+1(1)

n2(n − 2)
,

� E
(

(−k)σ̂
2
O

)
− E

(
(−t)σ̂

2
O

)
≈ Rk(δ)

=
δ

n(n − 2)
(
ct(1) − ct+1(1)

)
+

δ2

n − 2
.

From Theorem 2 (iii), we can figure out the effect of the outlier at the tth observation regardless
of the variation of the estimators. However, as sample sizes increases, the effect of the outlier de-
creases. Therefore, to reduce the effect of sample sizes in the outlier detection problem, we modify
the difference between the estimators for the leave-one-out method from (iii) of Theorem 2 as

E
(
DFF(t)

)
= E

[
(n − 1)

(
σ̂2

O − (−t)σ̂
2
O

)]
≈ δ

n
(
ct(1) − ct+1(1)

)
+ δ2

≈ δ2 (3.1)

and

E
(
DFF(k)

)
= E

[
(n − 1)

(
σ̂2

O − (−k)σ̂
2
O

)]
≈ −

ck(1)ck+1(1)

n2 . (3.2)
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From (3.1) and (3.2), we propose the single outlier detection procedure:

<Step 1> Compute DFF(k), k = 2, . . . , n − 1.

<Step 2> Find the tth observation, Yt, such that

t = arg max DFF(k), k = 2, . . . , n − 1.

<Step 3> If DFF(t) > cv, then

the tth observation is an outlier,

else

the tth observation is not an outlier.

where a cv(critical value) is obtained from the concepts of the outlier in normal distribution with mean
zero and variance one.

4. Simulation Study

We perform a small simulation on the outlier detection that is developed from the first order difference-
based estimator for leaving-one-out in nonparametric regression models with the single outlier. Our
simulations are based on the followings, including the previous two assumptions:

(A3) ϵi ∼ iid N(0, σ2), i = 1, . . . , n.

(A4) Three standard deviations from a normal distribution with mean zero are σ = 0.01, 0.1, 1.

(A5) The single outlier is defined as δ = 5, 10 of mild and extreme levels (Barbato et al., 2011).

(A6) The regression curve is g(x) = 5 sin(4πx).

(A7) Four sample sizes, n = 15, 50, 100, 500.

For each simulation setting, we generate observations and detect the single outlier. We repeat this
process 100 times and the results are summarized in Figure 1 to Figure 6.

In this simulation study we investigate the behavior of DFFs with the outliers, δ = 5, 10, under the
variances varying. Here we do not discuss the critical values which are on the outlier detection.

Figure 1 and Figure 4 are the scatter plots for the regression curve and observations with the
single outlier which are extreme and mild levels (δ = 10, 5), respectively. Figure 2 and Figure 5 are
the scatter plot of DFFs for 100 replications. Figure 3 and Figure 6 show the positions of a possible
outlier such that arg max DFF(k), k = 2, . . . , n − 1.

From Figure 3, since the magnitudes of the outlier is extreme regardless of the error variances
given, the maximum of DFFs are always around δ2. However, from Figure 6, the outlier detection
does not work well under the error variance, σ = 1, which the magnitudes are not extreme.

5. Conclusion and Further Work

This article proposes a difference-based variance estimator of detecting a outlier in nonparametric re-
gression models with a single outlier. The outlier detection problem has been rarely discussed in the
nonparametric regression model using the difference. The proposed outlier detection method is sim-
ple. In addition, the results are promising even in nonparametric regression models with many outliers
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Figure 1: The regression curve with errors and a single outlier (n = sample sizes, σ = standard deviation, t =
position of the outlier and δ = magnitude of the outlier)

Figure 2: For 100 replications, DFF’s for δ = 10
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Figure 3: DFF(t) such that t = arg max DFF(k), k = 2, . . . , n − 1 for δ = 10

Figure 4: The regression curve with errors and a single outlier (n = sample sizes, σ = standard deviation, t =
position of the outlier and δ = magnitude of the outlier)



340 Chun Gun Park

Figure 5: For 100 replication, DFF’s for δ = 5

Figure 6: DFF(t) such that t = arg max DFF(k), k = 2, . . . , n − 1 for δ = 5
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using some difference based estimators. To use the difference based estimators for outlier detection
problems in the cases of many outliers, first the statistical properties of them and the estimators for
the leave-one-out method should be derived. Second, some cut-off value or a test statistic should be
devised

Appendix:

Proof of Theorem 1

The expectation of the first order difference-based estimator is the form as

(ii) If a single outlier is 1 < t < n, then

σ̂2
O =

1
2(n − 1)

n∑
i=2

(Yi − Yi−1)2

=
1

2(n − 1)

 t−1∑
i=2

(Yi − Yi−1)2 + (Yt − Yt−1)2 + (Yt+1 − Yt)2 +

n∑
i=t+1

(Yi − Yi−1)2


=

1
2(n − 1)

 t−1∑
i=2

((gi − gi−1) + (ϵi − ϵi−1))2 + ((gt − gt−1) + (ϵt − ϵt−1) + δ)2

+ ((gt+1 − gt) + (ϵt+1 − ϵt) − δ)2 +

n∑
i=t+1

((gi − gi−1) + (ϵi − ϵi−1))2


=

1
2n2(n − 1)

n∑
i=2

c2
i(1) +

1
n(n − 1)

n∑
i=2

ci(1) (ϵi − ϵi−1) +
1

2(n − 1)

n∑
i=2

(ϵi − ϵi−1)2

+
δ

n(n − 1)
(
ct(1) − ct+1(1)

)
+

δ

n − 1
[(ϵt − ϵt−1) − (ϵt+1 − ϵt)] +

δ2

n − 1

=
1

2n2(n − 1)

n∑
i=2

d2
i(1) +

1
n(n − 1)

n∑
i=2

di(1) (ϵi − ϵi−1) +
1

2(n − 1)

n∑
i=2

(ϵi − ϵi−1)2

+
δ

n(n − 1)
(
dt(1) − dt+1(1) − 2nδ

)
+

δ2

n − 1

� E
(
σ̂2

O

)
= σ2 +

1
2n2(n − 1)

n∑
i=2

c2
i(1) + Rt(δ),

where

Rt(δ) =
δ

n(n − 1)
(
ct(1) − ct+1(1)

)
+

δ2

n − 1

and

di(1) =


ci(1) + nδ, i = t,
ci(1) − nδ, i = t + 1,
ci(1), i = 2, . . . , t − 1, t + 2, . . . , n.

The proofs of (i) and variance of (ii) are omitted as it is straightforward in details, see Park (2011) in
the Appendix.
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Proof of Theorem 2

Assume that a single outlier is the tth observation, Yt for 1 < t < n − 1. The expectation of the first
order difference-based estimator for the leave-one-out method are the form as

(i) If the tth observation removed is the outlier, then

(−t)σ̂
2
O =

1
2(n − 2)

 t−1∑
i=2

(Yi − Yi−1)2 + (Yt+1 − Yt−1)2 +

n∑
i=t+2

(Yi − Yi−1)2


=

1
2n2(n − 2)

 n∑
i=2

c2
i(1) + 2ct(1)ct+1(1)

 + 1
n(n − 2)

n∑
i=2

ci(1) (ϵi − ϵi−1)

+ ct(1)(ϵt+1 − ϵt) + ct+1(1) (ϵt − ϵt−1)

+
1

2(n − 2)

 n∑
i=2

(ϵi − ϵi−1)2 + 2 (ϵt − ϵt−1) (ϵt+1 − ϵt)

 ,
where

gt+1 − gt−1 = (gt+1 − gt) + (gt − gt−1)⇔ ct+1(2) = ct+1(1) + ct(1).

� E
(

(−t)σ̂
2
O

)
= σ2 +

1
2n2(n − 2)

 t−1∑
i=2

c2
i(1) + c2

t+1(2) +

n∑
i=t+2

c2
i(1)


= σ2 +

1
2n2(n − 2)

 n∑
i=2

c2
i(1) + 2ct(1)ct+1(1)


= σ2 +

1
2n2(n − 2)

n∑
i=2

c2
i(1) +

ct(1)ct+1(1)

n2(n − 2)

� Var
(
σ̂2

O

)
=

2σ2

n2(n − 1)2

 n∑
i=2

d2
i(1) −

n−1∑
i=2

di(1)di+1(1)

 + 2σ4
tr

(
B2

)
tr (B)2 ,

where

di(1) =


ci(1) + ci+1(1), i = t,
ci(1) + ci−1(1), i = t + 1,
ci(1), i = 2, . . . , t − 1, t + 2, . . . , n.

(ii) Let the tth observation be the outlier, If the kth (k < t) observation removed is not the outlier, then

(−k)σ̂
2
O =

1
2(n − 2)

 k−1∑
i=2

(Yi − Yi−1)2 + (Yk+1 − Yk−1)2 +

t−1∑
i=k+2

(Yi − Yi−1)2

+ (Yt − Yt−1)2 + (Yt+1 − Yt)2 +

n∑
i=t+2

(Yi − Yi−1)2


=

1
2n2(n − 2)

n∑
i=2

d2
i(1) +

1
n(n − 2)

n∑
i=2

di(1) (ϵi − ϵi−1) +
1

2(n − 2)

n∑
i=2

(ϵi − ϵi−1)2

+
(ϵk − ϵk−1) (ϵk+1 − ϵk)

(n − 2)
+

ck(1)ck+1(1)

n2(n − 2)
+ Rk(δ)
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� E
(

(−k)σ̂
2
O

)
= σ2 +

1
2n2(n − 2)

 t−1∑
i=2

c2
i(1) + c2

k+1(2) +

n∑
i=t+2

c2
i(1)

 + δ

n(n − 2)
(
ct(1) − ct+1(1)

)
+

δ2

n − 2

= σ2 +
1

2n2(n − 2)

 n∑
i=2

c2
i(1) + 2ck(1)ck+1(1)

 + δ

n(n − 2)
(
ct(1) − ct+1(1)

)
+

δ2

n − 2

= σ2 +
1

2n2(n − 2)

n∑
i=2

c2
i(1) +

ck(1)ck+1(1)

n2(n − 2)
+

δ

n(n − 2)
(
ct(1) − ct+1(1)

)
+

δ2

n − 2

= σ2 +
1

2n2(n − 2)

n∑
i=2

c2
i(1) + Rk(δ) +

ck(1)ck+1(1)

n2

� Var
(

(−k)σ̂
2
O

)
=

2σ2

n2(n − 1)2

 n∑
i=2

d2
i(1) −

n−1∑
i=2

di(1)di+1(1)

 + 2σ4 tr(B2)
tr(B)2 ,

where

Rk(δ) =
δ

n(n − 2)
(
ct(1) − ct+1(1)

)
+

δ2

n − 2

and

di(1) =


ci(1), i = 2, . . . , k − 1, k + 2, . . . , n,
ci(1) + ci+1(1), i = k,
ci−1(1) − ci(1), i = k + 1,
ci(1) + nδ, i = t, t + 1.

The proofs of variance of (i) and (ii) are omitted as it is straightforward in details, see Park (2011) in
the Appendix.

(iii) From (i), (ii) and Theorem 1, let compare the estimators. Then

� E
(
σ̂2

O

)
− E

(
(−t)σ̂

2
O

)
= Rt(δ) −

1
2n2(n − 1)(n − 2)

n∑
i=2

c2
i(1) −

ct(1)ct+1(1)

n2(n − 2)

≈ Rt(δ) −
ct(1)ct+1(1)

n2(n − 2)

≈ δ

n(n − 1)
(
ct(1) − ct+1(1)

)
+

δ2

n − 1

� E
(
σ̂2

O

)
− E

(
(−k)σ̂

2
O

)
= Rt(δ) − Rk(δ) − 1

2n2(n − 1)(n − 2)

n∑
i=2

c2
i(1) −

ck(1)ck+1(1)

n2(n − 2)

≈ Rt(δ) − Rk(δ) −
ck(1)ck+1(1)

n2(n − 2)

≈ − δ2

(n − 1)(n − 2)
− δ

n(n − 1)(n − 2)
(
ct(1) − ct+1(1)

) − ck(1)ck+1(1)

n2(n − 2)

≈ − δ2

(n − 1)(n − 2)
− δ

n(n − 1)(n − 2)
(
ct(1) − ct+1(1)

)
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� E
(

(−k)σ̂
2
O

)
− E

(
(−t)σ̂

2
O

)
= Rk(δ) +

ck(1)ck+1(1)

n2(n − 2)
−

ct(1)ct+1(1)

n2(n − 2)
≈ Rk(δ)

=
δ

n(n − 2)
(
ct(1) − ct+1(1)

)
+

δ2

n − 2
.
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