• 제목/요약/키워드: regression estimators

검색결과 227건 처리시간 0.029초

Finite-Sample, Small-Dispersion Asymptotic Optimality of the Non-Linear Least Squares Estimator

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제24권2호
    • /
    • pp.303-312
    • /
    • 1995
  • We consider the following type of general semi-parametric non-linear regression model : $y_i = f_i(\theta) + \epsilon_i, i=1, \cdots, n$ where ${f_i(\cdot)}$ represents the set of non-linear functions of the unknown parameter vector $\theta' = (\theta_1, \cdots, \theta_p)$ and ${\epsilon_i}$ represents the set of measurement errors with unknown distribution. Under suitable finite-sample, small-dispersion asymptotic framework, we derive a general lower bound for the asymptotic mean squared error (AMSE) matrix of the Gauss-consistent estimator of $\theta$. We then prove the fundamental result that the general non-linear least squares estimator (NLSE) is an optimal estimator within the class of all regular Gauss-consistent estimators irrespective of the type of the distribution of the measurement errors.

  • PDF

Non-convex penalized estimation for the AR process

  • Na, Okyoung;Kwon, Sunghoon
    • Communications for Statistical Applications and Methods
    • /
    • 제25권5호
    • /
    • pp.453-470
    • /
    • 2018
  • We study how to distinguish the parameters of the sparse autoregressive (AR) process from zero using a non-convex penalized estimation. A class of non-convex penalties are considered that include the smoothly clipped absolute deviation and minimax concave penalties as special examples. We prove that the penalized estimators achieve some standard theoretical properties such as weak and strong oracle properties which have been proved in sparse linear regression framework. The results hold when the maximal order of the AR process increases to infinity and the minimal size of true non-zero parameters decreases toward zero as the sample size increases. Further, we construct a practical method to select tuning parameters using generalized information criterion, of which the minimizer asymptotically recovers the best theoretical non-penalized estimator of the sparse AR process. Simulation studies are given to confirm the theoretical results.

우리나라에서 최근 (1976-2005) 강수의 변화 시점 (Change-Point in the Recent (1976-2005) Precipitation over South Korea)

  • 김찬수;서명석
    • 대기
    • /
    • 제18권2호
    • /
    • pp.111-120
    • /
    • 2008
  • This study presents a change-point in the 30 years (1976-2005) time series of the annual and the heavy precipitation characteristics (amount, days and intensity) averaged over South Korea using Bayesian approach. The criterion for the heavy precipitation used in this study is 80 mm/day. Using non-informative priors, the exact Bayes estimators of parameters and unknown change-point are obtained. Also, the posterior probability and 90% highest posterior density credible intervals for the mean differences between before and after the change-point are examined. The results show that a single change-point in the precipitation intensity and the heavy precipitation characteristics has occurred around 1996. As the results, the precipitation intensity and heavy precipitation characteristics have clearly increased after the change-point. However, the annual precipitation amount and days show a statistically insignificant single change-point model. These results are consistent with earlier works based on a simple linear regression model.

순서화 모수에 대한 베이지안 추정 (Bayesian estimation of ordered parameters)

  • 정광모;정윤식
    • 응용통계연구
    • /
    • 제9권1호
    • /
    • pp.153-164
    • /
    • 1996
  • 분포함수의 모수가 순서제약조건을 갖는 경우에 깁스샘플러(Gibbs sampler)를 이용한 모수 추정에 관해 논의하였다. 순서화 모수를 갖는 지수분포족 및 이항분포모형을 고려하고 완전조건부 분포를 유도하였으며 순서제약 조건을 만족하는 표본추출을 위해 일 대 일 대응 추출 알고리즘을 적용하였다. 동위회귀 최우추정량 및 동위베이지안 추정량과 그 결과를 비교하였다.

  • PDF

선형 평활스플라인 함수 추정과 적용 (A Linear Smoothing Spline Estimation and Applications)

  • 윤용화;김경무;김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.29-36
    • /
    • 1998
  • 본 논문은 Eubank (1994, 1997)에 의해 이론적으로 제안된 선형 평활스플라인 추정량에 대한 알고리즘을 개발함으로 선형 스플라인의 추정을 보다 쉽고 효율적으로 사용할 수 있도록 하는데 목적이 있다. 이 알고리즘을 이용하여 여러가지 모형의 예들에 대하여 추정량의 적합성을 조사하였고, 제시된 선형 평활스플라인 추정량이 비모수 함수 추정의 도구로서 잘 적합됨을 알 수 있었다.

  • PDF

설명변수를 고려한 불완전 사용현장데이터 분석 (Analysis of Incomplete Field Data with Covariates)

  • 오영석;최인수;배도선
    • 대한산업공학회지
    • /
    • 제25권4호
    • /
    • pp.510-516
    • /
    • 1999
  • This paper proposes methods of estimating lifetime distribution from incomplete field data under parametric regression models. Failure-record data-failure times and covariates-reported to the manufacturer can be seriously incomplete for satisfactory inference since only reported failures are recorded. This paper assumes that within-warranty data are reported with probability $P_1$ ($\leq1$) and after-warranty data are reported with Methods of obtaining pseudo and after-warranty data are reported with $P_2$ (< $P_1$). Methods of obtaining pseudo maximum likelihood estimators(PMLEs) are outlined, their asymptotic properties are studied, and specific formulas for Weibull distribution are obtained. Simulation studies are perfumed to investigate the effects of follow-up percentage on the PMLEs.

  • PDF

회귀직선에서 순서대립가설에 대한 비모수적 검정법 연구 (A study on a nonparametric test for ordered alternatives in regreesion problem)

  • 이기훈
    • 응용통계연구
    • /
    • 제6권2호
    • /
    • pp.237-245
    • /
    • 1993
  • 본 논문에서는 순서대립가설에 대하여 k개의 회귀직선의 평행선을 검정하는 비모수적 검정 법을 제안하였다. 검정통계량은 각 직선에서 얻은 기울기 추정량들에 가중치를 준죤키어 (Jonckheere)형태의 통계량이다. 제안된 통계량의 분포는 점근적으로 정규분포를 따르게 되 어, 검정법은 점근분포무관검정이 된다. 모수적 검정법과 비교한 점근상대효율은 바람직한 형태를 가지며, 기존의 비모수적 검정법과 비교하여도 더 효율적임을 보였다.

  • PDF

통계계산에서의 갱신 알고리즘에 관한 연구 (Updating algorithms in statistical computations)

  • 전홍석
    • 응용통계연구
    • /
    • 제5권2호
    • /
    • pp.283-292
    • /
    • 1992
  • 개인용 컴퓨터의 보급이 급격히 늘어남에 따라 자료의 통계분석에 개인용 컴퓨터가 많이 이용되고 있다. 컴퓨터의 하드웨어가 하루가 다르게 발전하고 있음으로 웬만큼 많은 양의 자료를 분석하는 데에는 컴퓨터의 기억용량이나 처리속도등이 문제되지는 않는다. 자료가 축차적(sequentially)으로 주어질 때 어떤 통계량을 계산하기 위하여 매번 전체 자료를 다시 읽어야 한다면 이는 번거로운 작업이 될 것이며 기억용량의 낭비임에 틀림없다. 이러한 문제점을 S/W 적인 입장에서 해결하고자 하는 노력이 바로 갱신 알고리즘(Updating Algorithm)이다. 이 연구에서는 몇가지 통계량에 대한 갱신 알고리즘들을 알아보고 그들의 특성을 밝힘으로써 소형 및 개인용 컴퓨터를 이용하여서도 많은 양의 자료분석이 가능하도록 하고자 한다.

  • PDF

Effects on Regression Estimates under Misspecified Generalized Linear Mixed Models for Counts Data

  • Jeong, Kwang Mo
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.1037-1047
    • /
    • 2012
  • The generalized linear mixed model(GLMM) is widely used in fitting categorical responses of clustered data. In the numerical approximation of likelihood function the normality is assumed for the random effects distribution; subsequently, the commercial statistical packages also routinely fit GLMM under this normality assumption. We may also encounter departures from the distributional assumption on the response variable. It would be interesting to investigate the impact on the estimates of parameters under misspecification of distributions; however, there has been limited researche on these topics. We study the sensitivity or robustness of the maximum likelihood estimators(MLEs) of GLMM for counts data when the true underlying distribution is normal, gamma, exponential, and a mixture of two normal distributions. We also consider the effects on the MLEs when we fit Poisson-normal GLMM whereas the outcomes are generated from the negative binomial distribution with overdispersion. Through a small scale Monte Carlo study we check the empirical coverage probabilities of parameters and biases of MLEs of GLMM.

A method of selecting an active factor and its robustness against correlation in the data

  • Yamada, Shu;Harashima, Jun
    • International Journal of Quality Innovation
    • /
    • 제4권2호
    • /
    • pp.16-31
    • /
    • 2003
  • A reducing variation of quality characteristics is a typical example of quality improvement. In such a case, we treat the quality characteristic, as a response variable and need to find active factors affecting the response from many candidate factors since reducing the variation of the response will be achieved by reducing variation of the active factors. In this paper, we first derive a method of selecting an active factor by linear regression. It is well known that correlation between factors deteriorates the precision of estimators. We, therefore, examine robustness of the selecting method against the correlation in the data set and derive an evaluation method of the deterioration brought by the correlation. Furthermore, some examples of selecting and evaluation methods are shown to demonstrate practical usage of the methods.