• Title/Summary/Keyword: regression estimators

Search Result 227, Processing Time 0.02 seconds

NONPARAMETRIC DISCONTINUITY POINT ESTIMATION IN GENERALIZED LINEAR MODEL

  • Huh, Jib
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.59-78
    • /
    • 2004
  • A regression function in generalized linear model may have a discontinuity/change point at unknown location. In order to estimate the location of the discontinuity point and its jump size, the strategy is to use a nonparametric approach based on one-sided kernel weighted local-likelihood functions. Weak convergences of the proposed estimators are established. The finite-sample performances of the proposed estimators with practical aspects are illustrated by simulated examples.

Regression Quantile Estimations on Censored Survival Data

  • Shim, Joo-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.31-38
    • /
    • 2002
  • In the case of multiple survival times which might be censored at each covariate vector, we study the regression quantile estimations in this paper. The estimations are based on the empirical distribution functions of the censored times and the sample quantiles of the observed survival times at each covariate vector and the weighted least square method is applied for the estimation of the regression quantile. The estimators are shown to be asymptotically normally distributed under some regularity conditions.

  • PDF

Expressions for Shrinkage Factors of PLS Estimator

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1169-1180
    • /
    • 2006
  • Partial least squares regression (PLS) is a biased, non-least squares regression method and is an alternative to the ordinary least squares regression (OLS) when predictors are highly collinear or predictors outnumber observations. One way to understand the properties of biased regression methods is to know how the estimators shrink the OLS estimator. In this paper, we introduce an expression for the shrinkage factor of PLS and develop a new shrinkage expression, and then prove the equivalence of the two representations. We use two near-infrared (NIR) data sets to show general behavior of the shrinkage and in particular for what eigendirections PLS expands the OLS coefficients.

  • PDF

Efficiency of Aggregate Data in Non-linear Regression

  • Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.327-336
    • /
    • 2001
  • This work concerns estimating a regression function, which is not linear, using aggregate data. In much of the empirical research, data are aggregated for various reasons before statistical analysis. In a traditional parametric approach, a linear estimation of the non-linear function with aggregate data can result in unstable estimators of the parameters. More serious consequence is the bias in the estimation of the non-linear function. The approach we employ is the kernel regression smoothing. We describe the conditions when the aggregate data can be used to estimate the regression function efficiently. Numerical examples will illustrate our findings.

  • PDF

VARIANCE ESTIMATION OF ERROR IN THE REGRESSION MODEL AT A POINT

  • Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.501-508
    • /
    • 2003
  • Although the estimate of regression function is important, some have focused the variance estimation of error term in regression model. Different variance estimators perform well under different conditions. In many practical situations, it is rather hard to assess which conditions are approximately satisfied so as to identify the best variance estimator for the given data. In this article, we suggest SHM estimator compared to LS estimator, which is common estimator using in parametric multiple regression analysis. Moreover, a combined estimator of variance, VEM, is suggested. In the simulation study it is shown that VEM performs well in practice.

REGRESSION FRACTIONAL HOT DECK IMPUTATION

  • Kim, Jae-Kwang
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.3
    • /
    • pp.423-434
    • /
    • 2007
  • Imputation using a regression model is a method to preserve the correlation among variables and to provide imputed point estimators. We discuss the implementation of regression imputation using fractional imputation. By a suitable choice of fractional weights, the fractional regression imputation can take the form of hot deck fractional imputation, thus no artificial values are constructed after the imputation. A variance estimator, which extends the method of Kim and Fuller (2004), is also proposed. Results from a limited simulation study are presented.

Bayesian Analysis for a Functional Regression Model with Truncated Errors in Variables

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.77-91
    • /
    • 2002
  • This paper considers a functional regression model with truncated errors in explanatory variables. We show that the ordinary least squares (OLS) estimators produce bias in regression parameter estimates under misspecified models with ignored errors in the explanatory variable measurements, and then propose methods for analyzing the functional model. Fully parametric frequentist approaches for analyzing the model are intractable and thus Bayesian methods are pursued using a Markov chain Monte Carlo (MCMC) sampling based approach. Necessary theories involved in modeling and computation are provided. Finally, a simulation study is given to illustrate and examine the proposed methods.

Detection of Change-Points by Local Linear Regression Fit;

  • Kim, Jong Tae;Choi, Hyemi;Huh, Jib
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • A simple method is proposed to detect the number of change points and test the location and size of multiple change points with jump discontinuities in an otherwise smooth regression model. The proposed estimators are based on a local linear regression fit by the comparison of left and right one-side kernel smoother. Our proposed methodology is explained and applied to real data and simulated data.

A Comparison Study on the Error Criteria in Nonparametric Regression Estimators

  • Chung, Sung-S.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.335-345
    • /
    • 2000
  • Most context use the classical norms on function spaces as the error criteria. Since these norms are all based on the vertical distances between the curves, these can be quite inappropriate from a visual notion of distance. Visual errors in Marron and Tsybakov(1995) correspond more closely to "what the eye sees". Simulation is performed to compare the performance of the regression smoothers in view of MISE and the visual error. It shows that the visual error can be used as a possible candidate of error criteria in the kernel regression estimation.

  • PDF

Estimation of product compositions for multicomponent distillation columns

  • Shin, Joonho;Lee, Moonyong;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.295-298
    • /
    • 1996
  • In distillation column control, secondary measurements such as temperatures and flows are widely used in order to infer product composition. This paper addresses the design of static estimators using the secondary measurements for estimating the product compositions of the multicomponent distillation columns. Based on the unified framework for the estimator problems, the relationships among several typical static estimators are discussed including the effect of the measured inputs. Design guidelines for the composition estimator using PLS regression are also presented. The estimator based on the guidelines is robust to sensor noise and has a good predictive power.

  • PDF