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NONPARAMETRIC DISCONTINUITY POINT
ESTIMATION IN GENERALIZED LINEAR MODEL!

JiB Hun!

ABSTRACT

A regression function in generalized linear model may have a discontinu-
ity /change point at unknown location. In order to estimate the location of
the discontinuity point and its jump size, the strategy is to use a nonparamet-
ric approach based on one-sided kernel weighted local-likelihood functions.
Weak convergences of the proposed estimators are established. The finite-
sample performances of the proposed estimators with practical aspects are
illustrated by simulated examples.
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1. INTRODUCTION

Suppose that a bivariate sample (X;,Y;) of (X,Y) is observed, where Y;’s
are real valued responses associated with covariates X;'s having density f with
support [0,1], i = 1,2,...,n. Assume the conditional distribution of ¥ given
X = z belongs to the following one-parameter exponential family:

fyix(ylz) = exp{yb(z) — b(8(z)) + c(y)} (1.1)

where b and ¢ are some known functions. One may be interested in estimating the
regression function m(z) = E(Y|X = z) = V' (6(z)). In parametric generalized
linear models, the function m(z) is modeled linearly via a link function g by

n(z) = glm(x)) = Bo + Piz.
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If g = (V')7!. then ¢ is called the canonical link. See McCullagh and Nelder
(1988) for details. The conditional density fyx (ylx) in (1.1) can be written in
terms of n(z) as

Frix (ylz) = exp{y(g o ¥') " (n(z)) = b((g 0 V') "' (n(2))) + e(y)} (1.2)

where o denotes the composition of functions.

A more flexible approach would be to let n(z) be a nonparametric function.
Fan et al. (1995) investigated the extension of the nonparametric regression tech-
nique of local polynomial fitting with a kernel weight to generalized linear models
and quasi-likelihood contexts. An extension of the smoothing spline methodol-
ogy to generalized linear models was studied by Green and Silverman (1994).
However, a problem arises when a generally smooth function has a discontinuity
point in the regression function. The usual nonparametric approaches to re-
gression modeling suffer from poor practical and theoretical performance in such
situations. In this paper, a method of estimating the location and jump size of
the discontinuity point in n(x) using kernel type estimators is introduced. The
proposed estimators are based on the difference of left and right one-sided local
polynomial estimators using the kernel weighted local-likelihood functions. A
one-sided kernel which is supported on the positive half-line has been usually
chosen for detecting a discontinuity point. As in Loader (1996), the one-sided
kernel which has a non-zero value at the left end of the support is used in this
paper. In fact, the estimator for the location of the discontinuity point achieves
the rate n~! due to a property of the one-sided kernel. The following works,
studied nonparametric discontinuity point estimations in the ordinary regression
model case, gave us the motivation described above.

Miiller (1992) developed weakly consistent estimators for the location and the
jump size of a discontinuity point in the v** derivative of the regression function
using the Gasser-Miiller type estimator. The one-sided kernel in Miiller (1992)
has the zero-value at the left end of the support. Under a stronger assumption
of smoothness on the regression function, this led to a slower rate of convergence
in comparison with n~1/@¥+1)_ For the case v = 0, Loader (1996) proposed a
discontinuity point estimator, based on the local polynomial fits, that attains the
n~! rate. It is assumed in her paper that the errors are Gaussian. Huh and
Carriére (2002) used Loader’s idea to detect a discontinuity point for a regression
function itself or its derivatives without the assumption of Gaussian errors.

There are many another related works about the nonparametric discontinuity
point detection problem. Koo (1997) used linear splines to estimate discontin-
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uous regression functions. Wang (1995) and Raimondo (1998) followed wavelet
coefficient approaches for detecting discontinuity points. Yin (1988) and Wu and
Chu (1993) considered multiple discontinuity points detection problems. McDon-
ald and Owen (1986), Hall and Titterington (1992) and Qiu and Yandell (1998)
introduced smoothing algorithms to detect discontinuity points and calculate the
regression estimates.

The organization of this paper as follows. Section 2 describes the generalized
linear model with the discontinuity point and proposes the estimators for the loca-
tion of the discontinuity point and the corresponding jump size. In Section 3, the
asymptotic properties of the estimators is shown. The proposed approaches are
demonstrated by two simulated numerical examples with introducing a method
for bandwidth choice in Section 4. All proofs are contained in Section 5.

2. MODEL AND ESTIMATION

Write £(z,y) for the logarithm of the conditional density in (1.2) with n(z)
replaced by z. Define ¢; = 84(z,y)/0z', i = 1,2. Note that ¢; is linear in y for
fixed z and that

ti(n(z),m(z)) = 0. L(n(z),m(z)) = —p(z)

where p(z) = v 1z){g'(m(z))}~? with v(z) = Var(Y|X = z). When the canon-
ical link g = (/) ! is used, p(z) = v(z).

Assume that a discontinuity point exists for the regression function n at some
point 7, 0 < 7 < 1, as given in the following assumption:

(A1) There exists a constant L, such that

In(z) — n(y)l < Lylz —y| whenever (z —7)(y —7) >0,

i.e. 7 satisfies the Lipschitz condition of order 1 over [0,7) and (7, 1]. The jump
size at the discontinuity point 7 in 7 is given by A = 75y (7) — n_(7) where
Ny (7) = limg -4 n(z), n-(7) = limy,,_n(z) and n(7) = n4 (7). Let us assume
0 < A < oo. The case of —oo < A < 0 can be treated in the same way.

Define 74 (z) = & as the right side estimator for n(z). where the (p + 1) x
1 vector &’ (z) = (@f. a7, ... ,EX)T maximizes the following right side kernel
weighted local-likelihood function:

n ¥4 L
Zé(ZamX_] _")Z-YJ)K<X],L ) 2.1)
0
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Here K is a one-sided kernel function with support [0. 1] and h = h, is a sequence
of bandwidths, which satisfy the following assumptions:

(A2) The function K satisfies folK(u)du =1, K(0) > 0 and K(u) > 0 for
0<u<l.

(A3) h =0, nh/logn — co and nh? — 0, as n — oo.

The left side estimator for n(z) can be defined similarly. Define 7_(z) = @&y,

P - ~_ ) T

where the (p + 1) x 1 vector @~ = (& ,@;,...,&, )" maximizes the left side

kernel weighted local-likelihood function:

n Y4 _‘Xv‘
Zz(ZOa,(Xj-x)l,Yj> K (m - J). (2.2)

j=1 1=

The local-likelihood functions in (2.1) and (2.2) are based on the one-sided data at
the right and left of z, respectively. In order to guarantee that the kernel weighted
log-likelihood functions in (2.1) and (2.2) are concave in a = (ag, ay....,ap)7,
which ensures the uniqueness of the maximizer, the assumption ¢5(z,y) < 0 for
all real z and y in the range of the response variable is needed. If the canonical
link is used, it is automatically satisfied. The canonical link is then chosen in this
paper. In this case, one obtains

U(zy) =y—9"'(2) and f(z,y) =—(g7")(2).

An estimator of the jump size at a point z can be defined by taking the
differences of these two estimators: A(z) = 74 (z)—7_(x). A reasonable estimator
7 of 7 is the value of z that maximizes A(z). Let @ C (0,1) be a closed interval
such that 7 € . Define

T= inf{z €Q:A(z) =sup Zk(:c)}
z€Q
for the location of the discontinuity point 7. An estimator of the jump size A
may be obtained by

AT) = 14(7) = 7-(7)-
There does not exist the explicit solutions to the maximization (2.1) and (2.2)
unless p = 0. Note that in the case p = 0, it is easy to show that the estimators
77+ (z) can be written as

. Do K(E(X; —x)/h)Y;
ne(z) =g -

i K (X —2)/h) (2.3)
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The choice of the order p of local polynomial turns out to have little impact on
the asymptotic property for 7 derived in Section 3. The order p = 0 is then
chosen. The assumption below is required in order to show the asymptotic result
described in the following section.

(A4) The function f having support {0, 1] satisfies the Lipschitz condition of order
1 over [0,1] and inf,¢fo ) f(x) > 0.

(A5) The function v satisfies infzco,yv(z) > 0. The function v satisfies the
Lipschitz condition of order 1 over [0,7) and (7, 1].

The assumption (A5) describes that the variance function v is discontinuous at
the point 7 when there exists the discontinuity point in the regression function.

Note that it is easy and convenient to show the asymptotic distribution of
7 with the estimators of m, and m_ instead of 71 in (2.3), where m4(:) =
g 1(n+(")). The estimators of m4 (z) can be given by applying the inverse of the
link function: Mm4(z) = g7 (H(x)). Define A = g~ (ny (7)) — g 1 (n_(7)) and
MNz) = ¢ 471 (z)) — g Y (H_(z)). The estimators of 7 and A are given by

7= inf{z €Q:A(z) = sugK(a:)} and A7) = ¢~ (7{(7)) = ¢~ (7 (7).
€
All previous works of nonparametric discontinuity point estimations of the ordi-
nary regression model case did not consider the existence of discontinuity point
in the variance function. However, in this setting, the functions m and v are
discontinuous at 7 because they depend on 7.

3. ASYMPTOTIC PROPERTIES

First, a weak convergence of the sequence of the process {p,(z) : —T < z <
T} in the following theorem is described, where

wn(z) = nh {K (7‘ + %) - K(T)}

and T < oo. Existence of the unique maximizer of the limit of the process ¢,
will be discussed later on. The process ¢, lies in the space, denoted by D[-T, T].
of functions having at most finitely many discontinuities defined on [-T,T]. To
obtain the theorem, consider the following additional assumption:

(A6) E(Y

2+e ’X = 1) < oc, for all ir and some positive e.
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Let - denote weak convergence in the space D([-T,T]), and define v, (7) =
limy_, -4 v(y) and v_(7) = limy_,_ v(y).
THEOREM 3.1. Suppose that assumptions (A1)-(A6) are satisfied.
W
on(2) 2 p(z) = ~AK(0)]2] + oW (2)

where W (z) is a two-sided Brownian motion defined in Bhattacharya and Brock-
well (1976), and

K(0) (3.1)
with 9(7) = vy (7) when 2 > 0 and (1) = v_(7) when z < 0.

Next, the asymptotic distribution of 7 is described. Let Z,; denote a maxi-
mizer of the process ¢ on [-M, M]. By Remark 5.3 in Bhattacharya and Brock-
well (1976) with the assumption K(0) > 0, Zjs is unique with probability one.
Let Z, be the location of the maximum of ¢,. By construction,

T=T+ é
e
Theorem 3 in Bhattacharya and Brockwell (1976) then gives Z, 2,z , Where
Z is the global maximizer of ¢ on (—o00,00). Remark 5.3 in Bhattacharya and
Brockwell also showed that the maximizer Z is unique with probability one.
Therefore. Corollary 3.1 follows immediately.

COROLLARY 3.1. Suppose that assumptions in Theorem 3.1 are satisfied.

n(7—7) 2 argmax { — AK(0)|z] + oW (2)}.

2€(~00,00)

Raimondo (1998) showed that the minimax rate for the location problem is
n~ /(21 for the vt derivative of a class of regression function satisfying a Lips-
chitz condition of order 1. Although the interesting function is regression function
in generalized linear model, the proposed estimator 7 achieves the optimal rate
n~! according to Corollary 3.1.

The following corollary describes the asymptotic distribution of the estimator

for the jump size K(?) as a consequence of Theorem 3.1.
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THEOREM 3.2. Suppose that assumptions in Theorem 3.1 are satisfied.
~ D vy (T) +o_(1) [! 2
Vnh(A(T) = A) — N O,T———-/ {K(u)} du ).
T 0

This work also applies to quasi-likelihood models, where only the relationship
between the mean and the variance is specified. In this situation the proposed
estimators can be achieved by replacing the log-likelihood by a quasi-likelihood.

4. NUMERICAL IMPLEMENTATIONS

An important practical problem in discontinuity point analysis is the selection
of the bandwidth. Hart and Yi (1998) proposed the one-sided cross-validation to
select the bandwidth for estimating the nonparametric regression function which
has no discontinuity point. In all procedures to estimate the locations and jump
sizes of discontinuity points in this section one-sided cross-validation is then used.
In practice, Hart and Yi (1998) suggested that one could average the left and right
one-sided cross-validation curves and use the minimizer of the average. Then, the

following criterion is chosen

cvihy = > L [{Yi — My —i( X))} + {Y; - m—,h,—i(Xi)}Q] (4.1)

(X lha—h]} h

where my p _;(X;) is the right and left estimators of m(X;) without using the ith
observation and ny, is the number of data in the interval [h, 1 —h] for a given h. As
Miiller (1992), it is desirable to choose a relatively small bandwidth for estimating
location and jump size as compared to the bandwidth chosen for estimating a
regression function. The bandwidth which is the smallest local minimizer of (4.1)
is then taken.

The maximization of the log-likelihoods was carried out by the Newton-
Raphson iteration when the order of the polynomial p is greater than 0. For
example, let £(a) be the locally kernel weighted log-likelihood function in (2.1).
The estimator & satisfies the following equation V,¢(a) = 0 where V,, denotes
the gradient with respect to a. Let V2/(a) be the (p + 1) x (p + 1) Hessian
matrix of £. The Newton-Raphson method for computing & starts with an initial
guesstimate &% and iteratively determine a'® from the formula

a*h = a® - (2@ vae@®).
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TAaBLE 1.1 The Monte Carlo cstimates of the MSEs and the averages with standard errors in
parentheses for the discontinuity point estimators in the case of m

n h Average of T MSE of T Average of A MSE of A

800  0.09995 049984  0.11920x10" 3 2.89383 0.39745
(0.00087)  (0.00035)  (0.05474x1073)  (0.01965)  (0.05745)

1200 0.09402  0.50005  0.07790x10~3 2.89149 0.30498
(0.00084)  (0.00028)  (0.05143x107%)  (0.01712)  (0.06543)

1600 0.09115  0.500110  0.00230x 10> 2.86634 0.19010
(0.00082)  (0.00005)  (0.00077x1073)  (0.01312)  (0.00968)

Finally, with regard to a stopping criterion, one which is employed is to stop when
|&®) —a*+V||, < w where ||-||; denotes the Ly norm. For most implementations,
choosing w = 1077 is sufficient.

To investigate the numerical performances of the proposed estimators defined
in Section 2, simulation studies are carried out. Sample sizes considered here
are 800, 1200 and 1600. All the results of the simulations are based on 1000
pseudo samples of each size. The predictor variable X;'s are random sample from
the uniform distribution. Throughout these simulations, the one-sided kernel
function is

K(z) = g(l ~ 2%)*1j0<a<1)-

To estimate the location of the discontinuity point, the jump sizes at z; = £/100,
k=1,...,100, are computed first, and then choose a point which maximizes the
absolute value of the calculated jump sizes over the interval Q. As suggested in
Miiller (1992), the interval Q = [h,1 — h] for the simulation settings is taken.
First, the proposed method is applied to binary responses with the Bernoulli

distribution having a discontinuity point at 7 = 0.5. The regression function m

is given by
my (z) = _exp(m(z))
1 + exp(n1(z))
where 71(z) = =3z + 3 X ljgs<z<y- Then, the jump sizes are A; = 3.0 and

A; = 0.635149. The logit link g(u) = log(u/(1 —u)) is canonical. In this case, the
variance function vy {(z) = exp(m (z))/{1+exp(n (z))}? also has the discontinuity
point at 7 = 0.5. In applying the proposed estimators, the local constant fitting
of p = 0 is chosen.

The second example concerns the case of nonnegative integer responses with
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TABLE 4.2 The Monte Carlo estimates of the MSEs and the averages with standard errors in
parentheses for the discontinuity point estimators in the case of 2

n h Average of T MSE of T Average of X MSE of A

800 0.08662 0.25025 0.00750x1073 —0.98558 0.03792
(0.00066) (0.00009) (0.00321x1073) (0.00614)  (0.00786)

1200  0.07497 0.25006 0.00120x107% ~0.99080 0.02222
{0.00058) (0.00004) (0.00092x1073) (0.00470)  (0.00392)

1600  0.06956 0.25001 0.00010x1073 —0.99478 0.01448

(0.00060)  (0.00001)  (0.00010x10~%)  (0.00380)  (0.00067)

the Poisson distribution. The regression function my is given by

ma(z) = exp(nz(z))

where 13(z) = 0.5{exp(2(z—0.25))10<z<0.25 —exp(—2(—0.25)) Lj0.25<x<1] } +2.0.
The regression function has the discontinuity point at 7 = 0.25. The jump sizes
of the discontinuity point are Ay = —1.0 and Ay = —7.700805. The canonical
link is g(u) = log(u). The variance function ve(z) = exp(nz(x)) has then the
discontinuity point at 7 = 0.25. The order of the polynomial fit p = 1 is chosen
and maximization of the log-likelihood is carried out by the Newton-Raphson
iteration described above. The C programming language has been used for these
simulations.

Table 4.1 and 4.2 show the Monte Carlo estimates of the mean squared errors
(MSE) and averages of the estimated the locations and jump sizes with the band-
widths selected by the criterion in (4.1). From these tables, the improvement of
MSE of 7 gets larger than that of A as sample size increases. In fact, it is needed
to compare the estimate with other estimate which also reflects existence of a
discontinuity point in regression function of generalized linear model. But, there
is no published result in this part.

In order to displa’y the empirical distribution of 7 in these simulation settings.
Table 4.3 and 4.4 report the frequencies with which discontinuities identified by
the 1000 replications of size 800 using the bandwidths selected by the criterion in
(4.1). Here the integer k& denoted by the index for the point z) which maximizes
the absolute value of the estimated jump sizes.
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TABLE 4.3 Discontinuity point identification frequency in the case of n

k (location) 31 35 39 48 49 50 51 52 53 68
frequency 1 1 1 10 33 899 46 6 2 1

TABLE 4.4 Discontinuity point identification frequency in the case of n2

k (location) 24 25 26 29
frequency 1 985 10 4

5. PROOFS

To prove Theorem 3.1, an asymptotic expression of ¢, will be described first.
Let

1 W—T — 2,
CHw,u,z) = i +zn)K < i ) {u—my(7+2) = Alcop}
1 w—T
e (U ) - matoh
_ 1 T+ 2z, —w ’
C,(w.u,z) = f(T+zn)K ( i ) {u—m_(7+22) + Ao}
1 T—Ww
i () = meo,
$n(2) = > _{CF(X;,Y5,2) — Cr (X, Y5, 2)}
j=1

for z # 0 and ¢,(0) = 0.
LEMMA 5.1. Suppose that the assumptions (A1)-(A4) are satisfied. Then,
Pn(z) = ¢n(2)(1 + 0p(1))
uniformly in z € [-T.T).

PROOF. Define z, = z/n and The sequence of the process ¢,(z) can be
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written as follows:

¢n(2)
:nh[{g ({4 (7 + 2)) = g~ (a7 + 20))} = {97 @(7) = g~ m (7))
g @+ z)) — g (2D} + (g A () = g7 (7)) = A
- nh[{ﬁu(T +2) = (4 20)} = (g () = ma (7))
~{fr\z_(”r+zn)—-m~(7'+zn)}+{fr\l_(T)—m_(T)}—A] (5.1)

for all z # 0. By (2.3),

Mi(z) — my(z) »
i}éx (£272) (9 - mato)) {nlh K (+522) } (52)

j=1
where = € Q.
Let

fgm:%jéi((&h_‘f”) and [ ( nhz ( >

When the kernel function is positive and bounded on a compact set, Stute (1982)
described the following result in Theorem 1.3:

logn
sup ‘fi — f(z)| = Op (h + gh ) (5.3)
TEQ n

It follows from (5.1), (5.2) and (5.3), the result follows uniformly in z € [-T, T).
O

LEMMA 5.2. Suppose that assumptions (Al1)-(A4) are satisfied. Then,
E(¢n(z)) = —AK(0)|z| + o(1)
uniformly in z € [-T,T].

PRrRoOOF. Let us prove the lemma for z > 0, as the other case can be dealt
similarly. By the assumption (A4).
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E[C (X111, 2)]
1 X]V - T - .
- g () = meto]
:h/K(u)[{m(T-}-zn + hu) —my (7 + 2,)}
—{m(1 + hu) — m4(7)}]du{l + O(h)}

on [ e {H5ged - L)

x{m(1 + hu) — my(7)}du (5.4)

where the O(h) term is uniform in z € [-T,T]. Similarly,
E[C; (X1, Y1,72)]
= h/K(u)[{m(T + Zny — hu) —m_ (7 + z,) + A}
~{m(r — hu) — m_(7)}]du{l + O(h)}

o1 fri{ it doci)

x{m(r — hu) — m_(7)}du (5.5)

where the O(h) terms are uniform in z € [-T,T]. By the assumption (A1),
m(r 4 hu) — ma(7) = {ma(r) — me(r) (1 + o(1)) (5.6)
for all u > 0 where 7+ lie between 7 and 7 £+ hu. Analogously,
m(7T + zp + hu) = my (T + 2,) = {my (T + 20) —my () HL +0(1))  (5.7)

where 7/, lies between 7 + z, and T + z, + hu. The second terms of (5.4) and
(5.5) are O(h?/n) uniformly in z by (5.6) and (A4). Furthermore, in the case of
E[C(X1,Y1,2)], it is easy to see that the first term is also O(h/n) uniformly in
z since the difference between (5.6) and (5.7) is O(1/n). Hence,
h
EB[C (X1, Y1.2)] = O(H) (5.8)

uniformly in 2.
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Since the discontinuity point 7 lies between 7+2,,—h and 742z,. approximation
of the first term of E[C}; (X1,Y1,2)] in (5.5) is slightly different. In this case the
interval of integration is divided into two parts. Note that, for 0 < u < z/(nh),

(7 + 2 — h) = m_ (7 4 20) = {m_(r + ) —m_(r)}{1 + o(1))  (5.9)
where 7* lies between 7 + z, and 7 + 2z, — hu. However, z/(nh) <u <1,

(7 + 2 — hu) - m(7)={ (r' —m_(D)}14o(1),  (5.10)
m_(7 + 2) = mi(r) = {my () —mi(M}1+o(1)  (5.11)

by Taylor expansions where 7/ lies between 7 and 7+ z, — hu and 7/ lies between
7 and T + z,. By the difference between (5.10) and (5.11),

m(T + z, — hu) —m_ (7 + zp)
= A+ {mo () =m0} = e () —ma()}]. (5.12)

By (5.7), (5.9) and (5.12), the integral of the first term of E[C;(X1,Y1,2)] in
(5.5) equals

/(nh) /(nh)
/ K(u)Adu + / Ku){m_(12) —m_(7 + z,) }du
0 0
1 1
[ K@matr) = ma)dus [ K(@){mo(r) = m(r)du
z/(nh) z/(nh)
1
- /0 K(){m_(r ) —m_(r)}du
uniformly in z. This with (A2) leads to
z/(nh)
E[C; (X1, Y1,2)] = h/ " K(w)Adu+ O (—@> (5.13)
0 n
uniformly in z. Combining (5.8) and (5.13),
E(pn(z)) = —nhA/ o w)du + O (h)

uniformly in z € [0, T). Since K (u) = K(0)(140(1)) uniformly for v € [0,T/(nh)].
the result follows. O
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LEMMA 5.3. Suppose that assumptions (A1)-(A5) are satisfied.
Cov(¢n(21);, Pn(22))

4min(zlaz2 {'U——'—F_j);j}_}{K }2+0 ) 21,22 207
2

4 min(|z1],]22]) {U (;2:)—A }{K( 0)}2 +0(1), 21,20 <0,

o(1), elsewhere

where the o(1) terms hold uniformly in 2,2, € [T, T).
PROOF. The lemma, for z;,z3 > 0 will be proved first. By Lemma 5.2,

Cov(pn(21), Pn(22))
= nCov [C:(Xthzl) — Cr (X1, Y1,21), CF (X1, Y1, 20) — C;(Xl’yl’m)]

= n[E{C,T(Xl,Y1,21)CTJ{(X1,Y1,Z2) — CY (X1,Y1,21)C, (X1, Y1, 22)
T C{{(Xl,Yl,Zl)C’I(X],Y],ZQ) + O;(XlaYlazl)cn—(XthZZ)}jl

+o(%>. (5.14)

Lemma 5.2 implies the O(1/n) term directly. Define z(;) = min(z1, 22), z(2) =
max(21, 22), T(1yn = 7 + 2(1y/n and T(g), = 7 + 2z(2)/n. Let

s = 7 () - 7 (M)
D, 2) = f(Tizn)K (H_zi:—u) - f(lf)K (T;u)'

Consider the first term in the bracket at (5.14) first. Note that

sup ’n(u) - 77+(.’II)| < (const)h (5.15)
u€z,z+h]

for = 7 or 7 + z,. By the assumptions (A2)-(A5) and (5.15),
E[C:(XlaylaZI)C:L_(XMYI)Z?)]
= E[D:(Xl,Z(l))D;i_(Xl,Z(Q)){YE - TTL X1)}2] + O(hg)

[ e (59 + [ etz {555 (55)}

T(2)nTh )
+ / D (u. z)) D (u. 2y | vf (u)du + O(h?)

YT 2)n
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L vy(T) Z(1) 1
=h f+('r) {K(O)}Qm +0 <(nh)2

uniformly in z; and z5 where v f(u) = v{u)f(u). Next, consider the second term

)] (1+ O(h)) + O(h®) (5.16)

in the bracket at (5.14) for the case z(;) = 2. The other cases can be dealt in a
similar way. Note that C;F(w,u,2) = 0 for w < 7, and that

sup  [n(u) = n+(7 + zn)| < (const)n™;
Ue[TaT+zn]

sup  |(w) = ns ()] < (constyn~. (5.17)
u€(7T,7+2x)

By (5.17),
E[CH(X1,Y1,21)C,, Xl,Ylyzz]
= E|:D+(X1 Z 7_2 < > {Y] Xl)}Q] + O (’n,_?)

- e () e (575))
+/TT(2)nD+(uz(1 ! K( )

:—hv(:(n) {{K —h) ( )] (1+0(h)+0 (™% (518

f(r)

uniformly in z; and z,. Analogously,

f(w)du+ O (n™3)

E[C, (X1,Y1,21)CF (X1, Y7, 20)]

= [ e () e () prrta o 00)

v o 2 1 _
= _h Jj((:)) [{K(O)}Z% +0 (W)] (1+0(h) + 0 (n™?) (5.19)

uniformly in z; and z,. Now, consider the last term in the bracket at (5.14).
Note that

sup {n(u) — 77_(7')‘ < (const)h. (5.20)
ue[r—h,T)
On the other hand, by (5.12)
sup m(u) —m_(7+ z,) - A! < (const)h. (5.21)

u€[r+z,—h,7)
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By (5.20) and (5.21) with the definition of C,; . the last term at (5.14) equals
E[C, (X1,Y1,21)C,, (X1, Y1, 22)]

= E[D;(Xh2(1))DE(X1,Z(2)){Y1 - m(X)}?
1 T(1)n ‘X1> 1 <T(2)n —X1> 2} 3
K K A O(h
+f(T(l,)n) ( h f(mm) h + O

_ [T 1 T(1)n ~ U) 1 ( T(2)n — ) 2
— K A
/ 7o) ( ) o S\ T e F A

+/7Dﬂm«mD< )] () + O(h)
T—h

= M L N O .
=h = [{K(o)} nh+O((nh)2>](1+0(h))+0(h) (5.22)

uniformly in z; and z2. Combining the first leading terms in (5.16), (5.18), (5.19)
and (5.22) concludes the proof of Lemma 5.3 for the case z;,29 > 0. It can be
shown in a similar way that the lemma follows for the case z1, 29 < 0 too.

Now, consider the case of z; > 0, 22 < 0. Following the lines in the proof for
the case 21,29 > 0,

E[C;(Xl, Y1, Zl)CﬁL(XhYl,Z:z)]

[ i {7 (55))

T2 th ‘
+ / D} (u, z(y) Dy (u, 2(2))} vf(u)du

T(2)n

[ (X1, Yth)C (Xl,Yl,th)} =0,
Bleat

XlaYhzl O+(X17Y17Z‘7)]

=[/Tmn{f<fi) (" ”””>}
K




NONPARAMETRIC DISCONTINUITY POINT ESTIMATION 75

E[C{(Xl-Yl-Zl)Cn_(Xl,Yl-ZQ)]

(i (5 e

T()n
+ / . Dy, (u. 2(1y) Dy, (u 2(2) )} vf(u)du (5.23)
T(1yn—

uniformly in z; and z5. Here, the second identity follows from the fact that
CH(w,u, 21)C,, (w,u,22) =0

for all w. Since DZ(w, z) = O(n~'h~!) uniformly in w and z, all of the leading
terms in (5.23) are O(1/(nh)?). This implies the result immediately. O

LEMMA 5.4. Suppose that the assumptions in Theorem 3.1 are satisfied. For
each z € [=T,T), ¢n(2) satisfies Lyapounov’s condition.

PRrROOF. Let us show the lemma for 2 > 0. The other case can be dealt
similarly. By Lemma 5.3, Var(¢,(z)) = O(1). It will be shown that, for some
positive e,

n 2+¢
Lale) = Y- B[00 - G, 5,0 | o
Jj=1

as n — oo. By the assumption (A6), E([{Y1 — m(X1)}*|*T¢|X = z) < oo for all
z. Note that

Ly(z)

< (const)n - 22+6E[{\D;(X1,Y1,z)|2+‘ + |D; (X1,Y1,2)| "1 = mx) [

2-4¢€
} + 0 (nh3+‘)

flr+2,) h
2+¢ 2+¢
-o({(GR) +G) o)
nh n
By the assumption (A2), the result follows. O

LEMMA 5.5. Suppose that the assumptions in Theorem 3.1 are satisfied.
Then, the sequence of the process ¥, (1) = ¢,(:) — E(¢,()) is tight.
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PRrROOF. By Theorem 12.3 in Billingsley (1968), it is enough to show that
there exist a positive constant C3 and a nondecreasing and continuous function
F such as

E(tpn(21) — n(22))? < C3|F(22) — F(21)]% (5.24)

for sufficiently large n. By Lemma 5.3, there exists a positive constant Cj such
that

E(1,(21) — wn(ZQ))Q = Var(qsn(zl)) - Var(¢n(22)) — 2Cov(dn(21), dn(22))
< Cslzg — 21|,

for sufficiently large n. This concludes the proof of Lemma 5.5. 0

PROOF OF THEOREM 3.1. Lemma 5.4 implies that ,(z), for fixed z €
[-T,T], converges weakly to a normal distribution. Furthermore, by the Cramer-
Wold device it may be shown that for fixed z1,..., 2,2 € [-T,T),

($n(21), Pn(22)s - - > ¥n(2)) —2 N(0,5)

where 3. is the asymptotic covariance described in Lemma 5.3. This concludes
the proof. See Theorem 8.1 and 12.3 of Billingsley (1968). O

PROOF OF THEOREM 3.2. Theorem 3.1 shows that \/nh{K(T + Zn/n) —
K(T)} ~£5 0. This implies that Vnh{K(?) - K(T)} £, 0. Now,

Vrh{A(7) — A} = Vah{A(7) — A(7)} + Vnh{A(r) — A}. (5.25)

Note that A(r) — A = {, (r) = my ()} = {A—(r) —m_(7)}. Define

8 = 3 [ (577 - metm- 1 (2550 - meo]

By (5.3), Vnh{A(r) — A — A()} = 0,(1). According to (5.6),

= Vnh ] — T — — T (T
= 5 [ K [m(r + ) = ma (7)) = {mtr = ) = m ()} 1+ + B

= VnhO(h)
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which is o(1) by the assumption nh? -+ 0 in (A5). Now, since the support of K
is [0, 1],

nhVar[A(1)] = h_le(’T) [Var {K (%"—T> (Y1 - m+(T)}}

vk (2 oy )]

nh Var[A(r)] = %/{K(u)}‘z{um T o_(r)}du(1 + O(h)) + O(h)

By (5.15) and (5.20),

The Lyapounov’s condition for vnh 1~\(T) can be easily verified. These together
with (5.25) imply Theorem 3.2. O
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