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Abstract
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In distillation column control, secondary measurements such as temperatures and flows are widely
used in order to infer product composition. This paper addresses the design of static estimators
using the secondary measurements for estimating the product compositions of the multicom-
ponent distillation columns. Based on the unified framework for the estimator problems, the
relationships among several typical static estimators are discussed including the effect of the
measured inputs. Design guidelines for the composition estimator using PLS regression are also
presented. The estimator based on the guidelines is robust to sensor noise and has a good

predictive power.
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INTRODUCTION

Product quality measurement is one of the major diffi-
culties associated with the composition control of dis-
tillation columns. Although on-line analyzers such as
Gas Chromatography(GC) have the advantage of di-
rectly measuring the product quality, the composi-
tion control by the analyzers has not been preferred
yet because of large measurement delays, high invest-
ment/maintenance costs and low reliability. Instead,
temperature control using a single tray temperature is
perhaps the most popular means of controlling prod-
uct composition. However, it also has many limita-
tions due to low sensitivity, non-key component effect,
disturbance effect, and dynamic lags. For these rea-
sons, many workers (Weber and Brosilow, 1972; Joseph
and Brosilow, 1978; Kresta, Marlin and MacGre-
gor, 1994; Mejdell and Skogestad, 1991; Piovoso and
Kosanovich, 1994) have studied the inferential models
using multiple secondary measurements. The design
issues for the composition estimator using secondary
measurements are : (1) the selection of the estimator
type; (2) the determination of the number of factors if
PCR or PLS regression is used; (3) the selection of the
secondary measurements to be used; (4) the selection
of the most effective variable transformation and scal-
ing. In this paper, we will present the design guidelines
by addressing the issues mentioned above.
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ESTIMATOR PROBLEM

Assume that a process behaves linearly within the op-
eration range. Then the process can be described by
the linear form as

c=Guu+ Gpm (2)
where ¢, 8, u, and m mean the unmeasured outputs,
the measured outputs, the unmeasured inputs, and the

measured inputs, respectively.
What we call the linear estimator design is to find

a matrix K which estimates 3T (i.e., [GT:¢T]) from
optimally selected secondary measurements xT (i.e.,

[F)TEmT]) :
¥y =Kx (3)

In the projection estimator(Weber and Brosilow, 1972;
Joseph and Brosilow, 1978), § are obtained as

i =FL(6 - Fram) @)
¢ = G,F!(§ — Frum) + Gum (5)
where F! means the general pseudoinverse of F.
In the regression estimators, the estimator matrix K
is obtained directly from the data matrices X™*9¢ and

Y"*P, The estimator matrix by MLR(Multiple Linear
Regression) is

Kmir = YT(XHT (6)



To avoid the singularity problem due to collinearities
in the MLR , PCR(Principal Component Regression)
and PLS(Partial Least Square) methods can be used
as

Kpcr = YIT(TTT)'PT (N
Kps = Q (PTW) ' WT (8)

where T™** is the score matrix and P?** and QP**
are the loading matrices.

Since only the first k terms may be distinguished from
measurement noise, the matrices include only these k
most important directions.

RELATIONSHIP BETWEEN THE ESTIMA-
TORS

PROJECTION AND MLR

Consider the case where (1) there is no measured in-
puts, i.e., m = 0 and x = 6, (2) dim(f) < dim(u), (3)
only the unmeasured outputs are estimated, i.e., y = c,
then the projection estimator can be written by

¢ = (‘I’cg'rq)gg_l)g (9)

The covariance matrix ®49 and the cross correlation
matrix ®.¢ can be expressed in terms of @ and C as

®yp = FuFI = (1/n)0T0 (10
. = GuFT = (1/n)CTO (11)

Therefore, eq.(9) can be expressed
¥ =YTX(XTX) 1x (12)

Therefore, it is clear that in the case where dim(8) <
dim(u) and m = 0, the MLR estimator is equivalent to
the projection estimator, and thus it can not estimate
the unmeasured variables exactly.

Since egs. (10) and (11) are still valid in the case
where dim(8) > dim(u), it is also clear that the in-
version problem in the MLR estimator is inherent in
the case where dim(f) > dim(u) because rank(F,) =
rank(®) = dim(u). One may try to use the PCR
method in order to overcome the inversion problem
instead of the MLR method. The number of factors
used in the PCR method should be k¥ < dim(u). If
k = dim(u), the resulting estimator provides the exact
estimate of the product composition and the estima-
tor gain matrix using the PCR method is the same as
the projection estimator using eq. (4). This result is
obvious because the number of factors needed to de-
scribe a model is equal to the model dimensionality if
the relationship between the variables is linear.

PROJECTION AND PCR OR PLS

Firstly, let’s consider the estimators which use only the
measured outputs like tray temperatures as the sec-
ondary measurements. In this case, all inputs are con-
sidered as the unmeasured inputs regardless of whether
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they are actually measurable or not. Thus, egs. (1) and
(2) can be expressed by augmenting the matrices Fy,
Fm, Gu, and Guy,:

§=F L‘:J (13)
c=G [I‘:l] (14)

where F = [Fume] and G = [Gume].
If dim(#) > dim(u) + dim(m) and rank(F) = dim(u) +
dim(m), u and m can be estimated from eq.(13) by

‘3} - Flg

B

Therefore, the product compositions ¢ are estimated
by

(15)

¢ = Kyb

(16)

where Ky = GF?.

Note that the estimator using eq.(16) is unique regard-
less of the estimation methods. Both the projection es-
timator and the PCR or PLS estimator of which num-
ber of factors are equal to system dimensionality give
the same estimator gain matrix.

Now let’s consider the estimators which use both the
measured outputs and the measured inputs as the sec-
ondary measurements. The form of the estimator can
be written by

. 6
c= K@m l:m:l (17)
The matrix Ky, is composed as follows:
Kom=[K; K3 ] (18)

The matrix K, is for the measured outputs # and the
matrix Kj is for the measured inputs m.

One can easily find that the matrix Kgn, is not unique
(there are infinite numbers of sets for K; and K):
since the matrix Ky in eq.(16) is unique (Stewart,
1973), the following relation can be obtained from
egs. (16) and(18).

Kypf =K 0 + Kom (19)

The above relation should be valid for arbitrary inputs.
Thus, by substituting eq.(1), we can get
(Ko - K1 )Fy=0

(Ko —Ki)Fm — K2 =0

(20)
(21)

Since dim(#) is greater than dim(u), it is clear that
there are infinite numbers of sets for K; which satisfy
eq.(20) for given F,, and Kj.

The projection estimator in eq.(5) is one of them. In



the projection estimator, K; and K are obtained sep-
arately and K is the matrix by which the unmeasured
inputs are estimated from the measured outputs com-
pensated by the measured inputs. On the other hand,
in the regression estimators K; and K, are obtained
simultaneously and they are the matrices by which the
unmeasured outputs are estimated from both the mea-
sured inputs and outputs. In the projection estimator,
the measured outputs such as temperatures are used
only for estimating the unmeasured inputs rather than
the unmeasured outputs. The effects of the measured
inputs on the unmeasured outputs is directly described
in terms of the measured inputs. It is easy to under-
stand if considering the extreme case where there is no
unmeasured disturbances, i.e.,( u = 0 ). The estima-
tion of the projection estimator is done by € = Gy,m.
On the other hand, if we construct the PCR or PLS
estimators using both # and m as the secondary mea-
surements, the estimator use both 8 and m even when
u = 0. This structural difference between the regres-
sion estimators and the projection estimator results
in quite different estimation characteristics. Since the
projection estimator highly depends on the information
of a few measured inputs, it is very sensitive to process
noise in measured inputs. Furthermore, if the mea-
sured inputs have nonlinearities and/or different dy-
namic characteristics from the unmeasured outputs to
be estimated, which is often the case in high purity dis-
tillation columns, the estimation performance severely
decreases. On the other hand, since the regression es-
timators such as PCR and PLS equally use both the
measured outputs and inputs, they are relatively insen-
sitive to the process noise and the nonlinearities of the
measured inputs. The comparisons of two approaches
will be presented by considering a linear case study in
later section.

RESULTS OF CASE STUDY

Simulation studies for several columns were performed
using the rigorous steady state simulator, Aspen-Plus.
The tray temperatures are used as the measured out-
puts while R and @Qp as the measured inputs. When
both # and m are used as the secondary measurements,
the projection estimator is not equivalent to the regres-
sion estimators(PCR and PLS) as shown in Fig. (1).
The model coefficients of & for the top product compo-
sition are almost the same in magnitude in each type
of the estimator. But the model coefficients of m(i.e.,
R and @Qpg) are very different as :

K, = [-0.1604 0.9455 ] T for projection estimator
K, ={0.0599 0.0680 ]T for PLS estimator

Since the effect of m on the product composition is
described by only m itself in the projection estimator,
the performance of the estimator is very sensitive to
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Figure 1. Comparison of the model coefficients of the
projection and PLS estimator.

the noise in m while the performance of the regression
estimators is relatively robust. Fig. 2 shows the per-
formances of the projection and PLS estimators when
the standard deviation of the noise in m is 10% of the
signal. This structural dependency may also cause the
degradation of the estimation performance in the real
situation due to different dynamics and nonlinearities
of the measured inputs m. If the system is linear, the
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Figure 2. Comparison of the predictions of the top prod-
uct composition using the projection and PLS estimator
when the notise is present in the measured inputs.

estimator does not depend on the control structure of
the system and the inferential model obtained from
any control structure can be directly used in the oth-
ers. However, since distillation systems are generally
nonlinear, different inferential models will be obtained
from different control structures. Therefore, it is im-
portant that the model to use will be the one based
on data collected under conditions closest to those ex-
pected in the final application.

There is an optimal model dimension which minimizes
the prediction error. The recommended number of fac-
tors is equal to the number of inputs which have inde-
pendent and dominant influence on the measured out-



put profile. Therefore, three factors were used for the
binary column. Since the directions of the temperature
profile cannot be explained in terms of R and Qg in
the linear form, the use of R and @ p is not preferred.
The value of PRESS was 0.263x10~* when R, Q5 and
tray temperatures were used while it was 0.588x1075
when only tray temperatures were used.

In the case of no noise, the results with unit-
variance scaling are better than those with no scal-
ing. But the estimator becomes more sensitive to
noise because the weight on the temperature measure-
ment, which has small variance (e.g. T1), is large.
When the transformation In(yp/(1 —yp)) on yp is
applied, the performance is not good(EPV=92.698,
PRESS=0.531x10"% with k=3.). The performance
of the estimator is improved by using the logarithmic
transformation both on the composition and tempera-
ture by In (yp/(1 — yp)) and In ((Ts — T8)/ (T} — 1),
The EPV with no noise is close to 100 % after only 3
factors due to the linearizing effect of the transforma-
tion. But the transformation is somewhat sensitive to
noise because (T; — T?)/ (T} — T;) term becomes zero
or infinite at the end of the column.

CONCLUSIONS

Two approaches (i.e., projection estimator and regres-
sion estimator) for the design of the estimator have
been discussed. The inversion problem in the MLR es-
timator has been shown from the equivalency with the
projection estimator in the special case. The projection
estimator using measured outputs only is equivalent to
the PCR or PLS estimator with proper number of fac-
tors. When both the measured outputs and inputs are
used as the secondary measurements, the projection es-
timator is not equivalent to the PCR or PLS estimator
any more. In this case, the structural dependency on
the measured inputs makes the two estimators to have
very different characteristics. It makes the projection
estimator more sensitive to measurement noise, thus
the projection estimator does not fully take the main
benefit for using multiple measurements with a high
degree of redundancy by averaging effect of the pro-
cess measurement noises. Furthermore since the rela-
tionship between the inputs and outputs are generally
nonlinear, the high dependency on the inputs in the
projection estimator leads to performance deteriora-
tion in the actual case. The control structure has no
effects on the inferential model in the linear case but
gives different results in the actual case due to nonlin-
earity.

Based on the analysis, the guidelines on the de-
sign of composition estimator via PLS have been pre-
sented: The recommended number of factors is equal
to the system dimensionality, i.e., the number of inde-
pendent variables (e.g. zp, yp, zp, and column pres-
sure P) which uniquely affect the temperature profile.

298

The additional factors does not, consistently cope with
nonlinearity while they lead to severe performance de-
terioration in the presence of noise. The relationships
between the auxiliary measured inputs (R and Qg)
and the product composition cannot be described in
the linear form. Thus, the estimation using the mea-
sured inputs is not desirable. Both variable transfor-
mation and scaling have effects on on the performance
of the estimator by giving a different weighting. The
performance of the logarithmic transformation only
on the composition is not good if the change of zg
is frequent. The transformation In (yp/(1 — yp)) and
In ((T; ~ TE)/(TL — T:)) is most effective but also most
sensitive to measurement noise. Unit variance scaling
gives good insights into the collinearities among the
measurements by making the collinear measurements
with 77 have the same information as T;. It also en-
hances the estimation performance but makes the esti-
mators sensitive to noise.
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