• Title/Summary/Keyword: regeneration energy

Search Result 356, Processing Time 0.022 seconds

A Study on the Planning Indicator for Carbon Neutral Green City (탄소중립 녹색도시 구현을 위한 계획지표 설정에 관한 연구)

  • Kim, You-Min;Lee, Joo Hyung
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.131-139
    • /
    • 2013
  • The aim of this dissertation is establishing internal indicator list for achieving policy goal of Carbon Neutrality Green City. First of all, it started to construct the basic system of planning indicator based on through comprehension of current studies such as advanced researches, government guidelines and green building certifications. And then it was set up final indicator list through inspecting FGI (Focus Group Interview), Verification of suitability, and Analysis of importance). As a result of this research, the planning indicator divided three steps and there were classified four fields in the top-level; Green Land and Ecology, Green Energy, Green Resource and Transportation, Green Living and Institution. According to the data, it deducted four items (ratio of green land, site plan, heat island and management of climate, base of nature ecology) and twelve index in the field of green land and ecology, three item(energy conservation and self-supporting, energy efficiency, new regeneration energy) and twelve index in the field of green energy and regeneration, five items(water resources utilize and circulation, other resource reduction and circulation, public transportation, green transportation plan) and fifteen index. Totally, Planning Indicators of forty nine were deducted. Therefore, there was the result of importance analysis that the indicators of plan and maintain management as the side of space for carbon neutrality were more appreciated than carbon reduction of individual building.

Study on OTEC System using Condenser Effluent from Nuclear Power Plant (원자력발전소 온배수를 이용한 해양온도차발전에 대한 연구)

  • Seo, Hyang-Min;Park, Sung-Seek;Shin, Sang-Ho;Kim, Chong-Bo;Kim, Nam-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1267-1272
    • /
    • 2008
  • OTEC power plants are studied as a viable option for the supply of clean energy. In this paper, the thermodynamic performance of OTEC system was calculated. The results show that the working fluids such as R32 and R125 would be alternatives based upon cutting down the system size, environmental preservation, and conditions without having a severe penalty in efficiency. the initial cost significantly. The regeneration system increase in energy efficiency, and the system can generate electricity when the difference in warm and cold seawater inlet temperatures are greater than $15^{\circ}C$. Also, the system efficiency of OTEC power plant using the condenser effluent from nuclear power plant instead of the surface water increased about 2%.

  • PDF

Research on the Performance of a Solar Air Conditioning System using a Liquid Desiccant in Summer (액체흡수제 이용 태양열 공조시스템의 하계 능력에 관한 연구)

  • Choi, K.H.;Yoon, J.I.;Kim, B.C.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.33-38
    • /
    • 2002
  • In order to find out whether solar air conditioning system could be applied to building or not, the performance and evaluation on thermal environment of the system suggested was done during summer. A solar model house was constructed to find out the performance and thermal environment evaluation when it actually operated outside. As a result, regeneration rate increased rapidly when LiCl solution temperature was over $50^{\circ}C$ and the regeneration rate was $13\sim15kg$ during 9 hours operation. Furthermore the dehumidification rate was 12kg at maximum during 10 hours operating of a dehumidifier and indoor temperature and relative humidity was $28.4^{\circ}C$ and 39.1% in average respectively. On evaluation of thermal environment during summer, PMV value was slightly high, but thermal sensation vote was 71% within the comfort zone.

Selection of Azetidine-2-carboxylic Acid Resistant Cell Lines by in vitro Mutagenesis in Rice (Oryza sativa L.)

  • Hyun, Do-Yoon;Lee, In-Sok;Kim, Dong-Sub;Lee, Sang-Jae;Seo, Yong-Weon;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2003
  • Resistant cell lines to azetidine-2-carboxylic acid (AZCA) were selected through rice embryo culture after mutagenic treatment of callus irradiated with 30,50,70,90 and 120 Gy. The optimum AZCA concentration for the selection of resistant cell lines was 3 or 4 mM AZCA considering $LD_{50}$ and the fresh weight of callus. Survival rate of the AZCA resistant callus showed remarkable increase in the callus irradiated with 50 and 70 Gy. Regeneration rate of the AZCA resistant callus was much lower on the whole. Ninety and 120 Gy increased the regeneration rate for calli selected from 3 and 4 mM AZCA, respectively. Based on fresh weight, survival rate and regeneration for selection of the AZCA resistant cell line, 50-90 Gy was considered as the optimum range of gamma irradiation. Irradiated calli selected from AZCA were more tolerant to NaCl than those from non-irradiated calli. It suggests that elevated resistance to osmotic stress resulted from mutagenic treatment. The level of free proline content in the AZCA resistant cell line was increased up to 3.5 times compared with that in the control. Proline content in the regenerant derived from the AZCA resistant cell line also increased to 1.7 times that from the control plants regenerated from callus grown in AZCA free medium. Selection of proline overproducing cell lines by in vitro mutagenesis was successful and seems to be useful for improvement of stress tolerance in this crop.

A Regeneration Inverter for Traction Applications with a Active Power Filter (능동전력필터를 가진 지하철 회생인버터 시스템)

  • Won, Chung-Yuen;Jang, Su-Jin;Kim, Yuen-Chung;Lee, Byoung-Kuk;Bae, Chang-Hwan;Kim, Yong-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.25-32
    • /
    • 2006
  • This paper proposes a regeneration inverter system, which can regenerate the excessive power form do bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are included to ac current source. The regeneration inverter is operated as two modes. In the regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and in the active power filter mode, it can compensate harmonic distortion produced by the rectifier substation. In this paper, the regeneration inverter uses PWM DC/AC inverter algorithm and the active power filter uses p-q theory. From the informative simulation and experimental results, which are performed wiith a prototype rated 3.7[kw], it can expected that the proposed system can be effectively applied in the real traction system rated 100[kw].

Reaction Characteristics of Coal and Oxygen Carrier Particle in a Thermogravimetric Analyzer (열중량분석기에서 석탄과 산소공여입자의 반응 특성)

  • Ryu, Ho-Jung;Kim, Young-Joo;Park, Yeong-Seong;Park, Moon-Hee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.213-222
    • /
    • 2011
  • To check adaptability of low ash coal(hyper coal) to chemical looping combustion, reaction characteristics of two coals (Roto and Hyper coal) with two oxygen carriers (NiO/bentonite, OCN703-1100) have been investigated in a thermogravimetric analyzer. Hyper coal represented low combustion rate and high ignition temperature, high volatile content and high devolatilization rate, and therefore, showed worse oxygen transfer during successive 10 cycle reduction-oxidation test than Roto coal. Finally we selected Roto coal as the candidate coal for chemical looping combustion. For Roto coal, OCN703-1100 particle showed better oxygen transfer than NiO/bentonite particle. During 10 cycle reduction oxidation test, change of the extent of oxidation (Wo) was negligible and we could conclude that both oxygen carriers have sufficient regeneration ability.

Study Characteristics in Packed Tower of Liquid Desiccant Solar Cooling System Using Counter Flow Configuration

  • Rahmanto, R. Hengki;Choi, K.H.;Agung, B.;Sukmaji, I.C.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.168-174
    • /
    • 2009
  • High water vapour content in air can cause a number of problems as for human or surrounding materials. For human a high water vapour can create physiological stress, discomfort, and also can encourage ill health. While, the cause for the environment is can accelerate the corrosion of metals, accelerate the growth of spores and mould, can reduce the electrical resistance of insulators and etc. Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling especially the latent load and also sensible load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed tower of liquid desiccant solar cooling system and the heat transfer and mass transfer will occur. This thesis is trying to study the characteristics inside the packed tower of dehumidifier systems. This characteristics consist of mass transfer rate, heat transfers rate, human comfort and energy that consume by the system. Those characteristics were affected by air flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems. The results of this thesis later on can be used to determine the best performance of the systems.

  • PDF

Elements and Apply Techniques for Improving the Insulation of Rural Houses (농촌주택의 단열 향상을 위한 요소와 적용기술 - 선행연구와 현장사례조사를 중심으로 -)

  • Kwon, Soon Chan;Kim, Eun Ja;Lim, Chang Su;Lee, Yoo Kyoung
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.4
    • /
    • pp.187-196
    • /
    • 2015
  • Among the factors of living environment, the one that is the most closely related with our living is the building. It is one of the biggest reasons for energy consumption as it forms 36% of the total energy consumption. Technologies equipped with excellent energy performance can hardly be applied to rural areas that are relatively poorer. Still, 89.8% rural residents are living in detached houses, and backward houses increase their financial burden and result in reduced insulation performance. Accordingly, this study is going to review the latest research written after 2000 dealing with rural houses and their insulation. The purpose of this study is to analyze the factors of insulation and how to improve insulation performance, conduct field research to find out how to apply low energy technologies applicable to houses with the subjects of experimental houses, the passive houses located in Jecheon City, Hongcheon Saldun zero energy houses, and energy independence villages, and find out how to perform follow-up research on insulation for rural houses. According to the findings, the latest research on insulation for rural houses is mostly focused on walls as well as windows and doors. Also, as ways to improve insulation performance, it suggests us to use high performance insulators, introduce new regeneration energy technology, and secure hermeticity. In addition, through field research, this author could find out low energy technologies applicable to houses such as solar energy facilities and heat recovery systems. Advanced research on insulation for rural houses has been focused on how to use materials or new regeneration energy, so follow-up research will have to consider the types of farming area or the residents' mode of living.

Designing for the Off-line UPS using SMB Flywheel Energy Storage System (초고속 플라이휠 에너지 저장시스템을 이용한 Off-line UPS 제작)

  • 최재호
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.689-692
    • /
    • 2000
  • This paper presents a designing for the Off-line UPS usig SMB Flywheel Energy Storage System. This described flywheel energy storage system is designed to replace of the conventional EMB(Electro Mechanical Battery) system. To realize the high efficiency and to minimize the torque ripple the waveform of the inverter output current is controlled to be sinusoidal. The actual performance of the Off-line UPS using flywheel energy storage system is described. The prototype device was manufactured, The experimental result has good characteristics at a time of power transition region and regeneration modes,

  • PDF