• Title/Summary/Keyword: reduction ratio flow speed

Search Result 40, Processing Time 0.032 seconds

Effects of Channel Amplitude Ratio on Flow and Heat Transfer Characteristics of Primary Surface Heat Exchanger for ORC (유기 랭킨 사이클용 스크롤 팽창기 성능 시험에 관한 연구)

  • Moon, Je-Hyeon;Park, Keun-Tae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.4
    • /
    • pp.151-157
    • /
    • 2014
  • An algebraic scroll expander has been fabricated and tested in a R134a Rankine cycle with heat source of 20 kW. For the operating conditions of 20~26 bar and $90{\sim}93^{\circ}C$ at the expander inlet and 8~9 bar at the outlet, the expander produced the shaft output power of about 0.6~0.7 kW in the operating speed range of 1500~2000 rpm. These correspond to the expander efficiency of 40~45%. The volumetric efficiency increased with increasing of the expander speed, reaching to 80% at 2000 rpm. Comparing to numerical simulation results, mechanical efficiency from the test data was found to be considerably low by as much as 30%, indicating that reduction in the frictional loss should be made to improve the scroll expander efficiency.

Features of the flow over a finite length square prism on a wall at various incidence angles

  • Sohankar, A.;Esfeh, M. Kazemi;Pourjafari, H.;Alam, Md. Mahbub;Wang, Longjun
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.317-329
    • /
    • 2018
  • Wake characteristics of the flow over a finite square prism at different incidence angles were experimentally investigated using an open-loop wind tunnel. A finite square prism with a width D = 15 mm and a height H = 7D was vertically mounted on a horizontal flat plate. The Reynolds number was varied from $6.5{\times}10^3$ to $28.5{\times}10^3$ and the incidence angle ${\alpha}$ was changed from $0^{\circ}$ to $45^{\circ}$. The ratio of boundary layer thickness to the prism height was about ${\delta}/H=7%$. The time-averaged velocity, turbulence intensity and the vortex shedding frequency were obtained through a single-component hotwire probe. Power spectrum of the streamwise velocity fluctuations revealed that the tip and base vortices shed at the same frequency as that ofspanwise vortices. Furthermore, the results showed that the critical incidence angle corresponding to the maximum Strouhal number and minimum wake width occurs at ${\alpha}_{cr}=15^{\circ}$ which is equal to that reported for an infinite prism. There is a reduction in the size of the wake region along the height of the prism when moving away from the ground plane towards the free end.

A study on 2-D wake flow control by acoustic excitation (음파 가진을 이용한 2차원 웨이크 유동 제어에 관한 연구)

  • Kim, Hyeon-Jin;Kim, Jae-Ho;Kim, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.860-873
    • /
    • 1998
  • In a low speed open-type wind tunnel, a group of parallel wakes downstream of two dimensional grid model consisting of several circular cylinders were experimentally investigated to study the response of the wake flows to the acoustic excitation, in hoping to promote the understanding of the underlying mechanism behind the gross flow change due to artificial excitation. In the unexcited wake flows, the development of the individual wakes behind cylinders was almost uniform for the ratio of the spacing to the cylinder diameter of s/d.geq.1.5. For smaller s/d, however, the jet streams issued through the gaps between the cylinders became biased in one side and the cylinders had wakes of different sizes. At s/d=1.25, the gap flow directions change in time, leading to unstable wake patterns. Further reduction in s/d made this unstable flip-flopping of the jets stable. The most effective excitation frequency was found to be in the Strouhal number range of St=0.5-0.6. This frequency was related to the vortex shedding. At s/d=1.75, the excitation frequency was 2 or 4 times the vortex shedding frequency. When the flow was excited at this frequency, the vortex sheddings were energized, and pairings between neighboring vortices were generated. Also, the merging process between individual wakes was accelerated. The unstable and unbalanced wake patterns at s/d=2.15 were made stable and balanced. The unstable and unbalanced wake patterns at s/d=2.15 were made stable and balanced. For smaller spacing of s/d .leq,1.0, the acoustic excitation became less effective in controlling the flow.

Reuse of Exhaust Heat and Improvement in Fuel Efficiency of Grain Dryer (곡물(穀物) 건조기(乾燥機)의 배기열(排気熱) 재이용(再利用) 및 열효율(熱効率) 개선(改善)에 관(關)한 연구(硏究))

  • Keum, Dong Hyuk;Lee, Yong Kook;Lee, Kyou Seung;Han, Jong Ho
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.65-73
    • /
    • 1984
  • While most of researches on the performance of high temperature grain dryer have dealt mainly with improving dryer capacity and drying speed during the last twenty years, energy efficiency, in fact, has not been emphasized. Current fuel supplies and energy cost have shifted the emphasis to reducing the energy consumption for grain drying while maintaining dryer capacity and grain quality. Since the energy input for drying is relatively large, the recovery and reuse of at least part of the exhaust energy can significantly reduce the total energy consumption in existing drying systems. Unilization of exhaust heat in grain dryer either through direct recycling or by a thermal coupling in heat exchanger have been subject of a number of investigators. However, very seldom research in Korea has been done in this area. Three drying tests(non-recycling, 0.22 recycle ratio, and 0.76 recycle ratio)were performed to investigate the thermal efficiency and heat loss factors of continuous flow type dryer, and to analyze the effect of recycle ratio (weight of exhaust air recycled/total weight of input air) on the energy requriements for rough rice drying. The test results showed that when the exhaust air was not recycled, the energy lost from furnace was 15.3 percent of input fuel energy, and latent and sensible heat of exhaust air were 61.4 percent and 11.2 percent respectively. The heat which was required in raising grain temperature and stored in dryer was relatively small. As the recycle ratio of exhaust air was increased, the drying rate was suddenly decreased, and thermal efficiency of the kerosene burner was also decreased. Drying test with 0.76 recycle ratio resulted in 12.4% increase in fuel consumption, and 38.4% increase in electric power consumption as compared to the non-recycled drying test. Drying test of 0.22 recycle ratio resulted in 6.8% saving in total energy consumption, 8.0% reduction in fuel consumption, and 2.5% increase in electric power consumption as compared to the non-recycled drying test.

  • PDF

Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons (도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향)

  • Park, Soo-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2014
  • In this study, the effects of building-roof cooling on scalar dispersion in three-dimensional street canyons are investigated using a computational fluid dynamics (CFD) model. For this, surface temperature of building roof is systematically changed and non-reactive pollutants are released from street bottom in urban street canyons with the aspect ratio of 1. The characteristics of flow, air temperature, and non-reactive pollutant dispersion in the control experiment are analyzed first. Then, the effects of building-roof cooling are investigated by comparing the results with those in the control experiment. In the control experiment, a portal vortex which is a secondary flow induced by ambient air flow is formed in each street canyon. Averaged air temperature is higher inside the street canyon than in both sides of the street canyon, because warmer air is coming into the street canyon from the roof level. However, air temperature near the street bottom is lower inside the street canyon due to the inflow of cooler air from both sides of the street canyon. As building-roof temperature decreases, wind speed at the roof level increases and portal vortex becomes intensified (that is, downdraft, reverse flow, and updraft becomes stronger). Building-roof cooling contributes to the reduction of average concentration of the non-reactive pollutants and average air temperature in the street canyon. The results imply that building-roof cooling has positive effects on improvement of thermal environment and air quality in urban areas.

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

A Study on the Comparison of the Rolling and Resistance Performance for the Stepped-Hull with attached a Stern-body by using Sea Model-Test (실 해상모형시험을 이용한 선미 보조동체 장착 Stepped hull 선형의 횡동요 및 저항특성 비교 연구)

  • Jo, Hyo-Jae;Sohn, Kyoung-Ho;Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.813-818
    • /
    • 2007
  • There are the C.W.C and Towing Tank to the model-test equipments of the boat. A model testing of the high speed boat have a difficult in the performance verification because of very a small the scale-ratio of the ship-model and restricted by flow-velocity of the C.W.C and X-carriage velocity of the T.T. In general, the stepped hull boat is a high of fuel-efficiency because of the resistance reduction by a small wetted surface-area in correspond without stepped-hull boat. But It have a tendency to be bad the rolling performance by reduced stern wetted-area In this paper, the high speed stepped planning-boats with & without attached a stern body were performed to compare the effect of resistance and rolling performance by using sea model-test method.

A Scale-Up Test for Preparation of AlN by Carbon Reduction and Subsequent Nitridation Method (탄소환원질화법에 의한 AlN 제조 규모확대 시험결과)

  • Park, Hyung-Kyu;Kim, Sung-Don;Nam, Chul-Woo;Kim, Dae-Woong;Kang, Moon-Soo;Shin, Gwang-Hee
    • Resources Recycling
    • /
    • v.25 no.5
    • /
    • pp.75-83
    • /
    • 2016
  • AlN powder was prepared by carbon reduction and subsequent nitridation method through the scale-up experiments of 0.7 ~ 1.5 kg per batch. AlN powder was synthesized using the mixture of $Al_2O_3$ powder and carbon black at $1,550{\sim}1,750^{\circ}C$ for 0.5 ~ 4 hours under nitrogen atmosphere (flow rate of nitrogen gas: $10{\sim}40{\ell}/min$) at $2.0{\times}10^{-1}Torr$. Experimental results showed that $1,700{\sim}1,750^{\circ}C$ for the reaction temperature, 3 hr for reaction time, and $40{\ell}/min$ for the flow rate of nitrogen gas were the optimal conditions. Also, in order to remove carbon in the synthesized AlN, the remained carbon was removed at $650{\sim}750^{\circ}C$ for 1 ~ 2 hr using horizontal tube furnace. The results showed that 1 : 3.2 mol ratio of $Al_2O_3$ to carbon black, reaction temperature of $750^{\circ}C$, reaction time of 2 hours, rotating speed of 1.5 rpm under atmosphere condition were the optimal conditions. Under these conditions, high-purity AlN powder over 99% could be prepared: carbon and oxygen contents of the AlN powder were 835 ppm and 0.77%, respectively.

An Experimental Study on Optimizing for Tandem Gas Metal Arc Welding Process (탄뎀 가스메탈아크 용접공정의 최적화에 관한 실험적 연구)

  • Lee, Jongpyo;Kim, Illsoo;Lee, Jihye;Park, Minho;Kim, Youngsoo;Park, Cheolkyun
    • Journal of Welding and Joining
    • /
    • v.32 no.2
    • /
    • pp.22-28
    • /
    • 2014
  • To enhance productivity and provide high quality production material in a GMA welding process, weld quality, productivity and cost reduction affects the number of process variables. In addition, a reliable welding process and conditions must be implemented to reduce weld structure failure. In various industries the welding process mathematical model is not fully formulated for the process parameter and on the welding conditions, therefore only partial variables can be predicted. The research investigates the interaction between the welding parameters (welding speed, distance between electrodes, and flow rate of shielding gas) and bead geometry for predicting the weld bead geometry (bead width, bead height). Taguchi techniques are applied to bead shape to develope curve equation for predicting the optimized process parameters and quality characteristics by analyzing the S/N ratio. The experimental results and measured error is within the range of 10% presenting satisfactory accuracy. The curve equation was developed in such a way that you can predict the bead geometry of constructed machinery that can be used for making tandem welding process.

Improved Electrical Properties by In Situ Nitrogen Incorporation during Atomic Layer Deposition of HfO2 on Ge Substrate (Ge 기판 위에 HfO2 게이트 산화물의 원자층 증착 중 In Situ 질소 혼입에 의한 전기적 특성 변화)

  • Kim, Woo-Hee;Kim, Bum-Soo;Kim, Hyung-Jun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Ge is one of the attractive channel materials for the next generation high speed metal oxide semiconductor field effect transistors (MOSFETs) due to its higher carrier mobility than Si. But the absence of a chemically stable thermal oxide has been the main obstacle hindering the use of Ge channels in MOS devices. Especially, the fabrication of gate oxide on Ge with high quality interface is essential requirement. In this study, $HfO_xN_y$ thin films were prepared by plasma-enhanced atomic layer deposition on Ge substrate. The nitrogen was incorporated in situ during PE-ALD by using the mixture of nitrogen and oxygen plasma as a reactant. The effects of nitrogen to oxygen gas ratio were studied focusing on the improvements on the electrical and interface properties. When the nitrogen to oxygen gas flow ratio was 1, we obtained good quality with 10% EOT reduction. Additional analysis techniques including X-ray photoemission spectroscopy and high resolution transmission electron microscopy were used for chemical and microstructural analysis.