DOI QR코드

DOI QR Code

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels

선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구

  • Kim, Jung-eun (Graduate School of Mokpo National Maritime University) ;
  • Cho, Dae-Hwan (Division of Marine Engineering, Mokpo National Maritime University) ;
  • Lee, Chang-Yong (Division of Marine Engineering, Incheon National Maritime High School)
  • 김정은 (목포해양대학교 대학원) ;
  • 조대환 (목포해양대학교 기관시스템공학과) ;
  • 이창용 (국립인천해사고등학교)
  • Received : 2022.05.02
  • Accepted : 2022.06.27
  • Published : 2022.06.30

Abstract

As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

국제해사기구(IMO)의 온실가스(GHG) 감축 전략과 같은 환경규제를 강화함에 따라 친환경 선박 및 대체 연료 등 기술 개발이 확대되고 있다. 그의 일환으로 해운사와 조선사를 중심으로 에너지 저감과 풍력 추진 기술을 활용한 선박 추진 기술이 대두되고 있다. 풍력 추진 기술의 확보와 실증 연구를 조선 및 해운 분야에 도입함으로써 친환경 기술을 활용한 고부가가치 시장을 창출할 수 있으며, 운항선박의 연료 소비율을 줄임으로써 연비를 약 6~8 % 정도 향상시켜 GHG의 감축을 기대할 수 있다. 로터 세일(Rotor Sail, RS) 기술은 원형 실린더가 일정한 속도로 회전하여 유체를 통과할 때 실린더의 수직 방향으로 유체역학적 힘을 발생시키는 기술이다. 이를 마그누스 효과(Magnus Effect)라고 하며, 본 연구에서는 선박에 설치된 풍력보조추진 시스템인 RS 주위의 난류 유동특성에 관한 수치해석적 연구를 통하여 추진효율을 높일 수 있는 방안을 제시하고자 하였다. 그래서 RS의 공기 역학적 힘에 영향을 미치는 매개변수로써 속도비(Spin Ratio, SR)와 종횡비(Aspect Ratio, AR) 변화에 따른 양력계수(CL)와 항력계수(CD)를 도출하였고, RS 끝단 플레이트(End Plate, EP) 적용에 따른 RS 주변 유동특성을 비교하였다.

Keywords

References

  1. Badalamenti, C. and S. A. Prince(2008), Effects of endplates on a rotating cylinder in crossflow, the 26th AIAA Applied Aerodynamics Conference, Honolulu, Hawaii, USA.
  2. Bae, C. S. and W. J. Yang(2022), Analysis of the Importance of Eco-friendly Ship Dissemination Policy using the Analytic Hierarchy Process in Journal of the Korean Society of Marine Environment & Safety Research Paper Vol. 28, No. 1, pp. 117-124 https://doi.org/10.7837/kosomes.2022.28.1.117
  3. Bordogna, G., S. Muggiasca, S. Giappino, M. Belloli, J. A. Keuning, and R. H. M. Huijsmans(2020), The effects of the aerodynamic interaction on the performance of two Flettner rotors, Final version published in: Journal of Wind Engineering & Industrial Aerodynamics 196. https://doi.org/10.1016/j.jweia.2019.104032
  4. De Marco, A., S. Mancini, and C. Pensa(2014), Preliminary analysis for marine application of Flettner rotors, in Proceedings of the 2nd International Symposium on Naval Architecture and Maritime (INT-NAM '14), Istanbul, Turkey, October.
  5. De Marco, A., S. Mancini, C. Pensa, R. Scognamiglio, and L. Vitiello(2015), Marine application of flettner rotors: numerical study on a systematic variation of geometric factor by DOE approach, the 6th International Conference on Computational Methods in Marine Engineering (MARINE '15), vol. 1, Rome, Italy.
  6. De Marco, A. and S. Mancini(2016), Flettner Rotor Concept for Marine Applications: A Systematic Study, Hindawi Publishing Corporation International Journal of Rotating Machinery Volume 2016, Article ID 3458750, p. 12.
  7. Devaraj, V. and J. Raju(2017), Feasibility Study of Flettner Rotor Propulsion Using Numerical Analysis, 2017 IJEDR, Volume 5, Issue 4.
  8. Enercon Wind Company(2013), Enercon E-ship 1: a wind-hybrid commercial cargo ship in Proceedings of the 4th Conference on Ship Efficiency.
  9. Hu, Jiangping, Yanxia Wang, Jinfang Wei, and Jingpu Chen(2019), The Dynamic Performance of a Rotating Frustum of a cone, in Proceedings of Sixth International Symposium on Marine Propulsors, smp'19, Rome, Italy.
  10. Li, B., R. Zhang, B. Zhang, Q. Yang, and C. Guo(2021), An assisted Propulsion device of vessel utilizing wind energy based on magnus effect in Proceedings of Applied Ocean Research Volume 114, September 2021.
  11. Prandtl, L.(1925), The Magnus effect and wind-powered ships, Naturwissenschaften, vol. 13, pp. 1787-1806.
  12. Reid, E. G.(1924). Tests of rotating cylinders, NACA TN 209, pp. 10-11.