• Title/Summary/Keyword: reduction of damage

Search Result 1,623, Processing Time 0.028 seconds

Characteristics of concrete intensity using high early strength AE water reducing agent (조강형 AE감수제를 사용한 콘크리트의 강도발현 특성)

  • Kim, Jung-Tai;Kim, Seung-Han;Jang, Seck-Soo;Jung, Yong-Wook;Yeo, In-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.793-796
    • /
    • 2008
  • Recently early strength concrete has been required for economical assurance and the prevention of frost damage in winter through air reduction in construction of concrete structures. This study presented the optimum condition revealing compressive strength 5MPa which has the possibility of removal of form in 24 hours, and researched the changes of unit weight of cement types of high early strength AE water reducing agents, characteristic of compressive strength expression as cure temperature conditions and slump or airspace. Test results showed at $15^{\circ}C$ with compressive strength of 5MPa that premature removal of form was possible in case of using highly early strength PC water reducing agent with unit weight of cement 360 ; 22hours faster than 10, unit weight 360 ; 20hours faster than 7, unit weight 390 ; 18 hours faster than 4 comparing with OP water reducing agent. And at $5^{\circ}C$ in case of using highly early strength PC water reducing agent with unit weight of cement 330 ; 32hours faster than 10, unit weight 360 ; 30hours faster than 7, unit weight390 ; 27hours faster than 4 comparing with OP water reducing agent. Therefore as the temperature rises $10^{\circ}C$, compressive strength of 5MPa reaching hour shortens 10 hours.

  • PDF

Health Risk Assessment by Exposure to Heavy Metals in PM2.5 in Ulsan Industrial Complex Area (울산 산단지역 PM2.5 중 중금속 노출에 의한 건강위해성평가)

  • Ji-Yun Jung;Hye-Won Lee;Si-Hyun Park;Jeong-Il Lee;Dan-Ki Yoon;Cheol-Min Lee
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.2
    • /
    • pp.108-117
    • /
    • 2023
  • Background: When particles are absorbed into the human body, they penetrate deep into the lungs and interact with the tissues of the body. Heavy metals in PM2.5 can cause various diseases. The main source of PM2.5 emissions in South Korea's atmosphere has been surveyed to be places of business. Objectives: The concentration of heavy metals in PM2.5 near the Ulsan Industrial Complex was measured and a health risk assessment was performed for residents near the industrial complex for exposure to heavy metals in PM2.5. Methods: Concentrations of heavy metals in PM2.5 were measured at four measurement sites (Ulsan, Mipo, Onsan, Maegok) near the industrial complexes. Heavy metals were analyzed according to the Air Pollution Monitoring Network Installation and Operation Guidelines presented by the National Institute of Environmental Research. Among them, only five substances (Mn, Ni, As, Cd, Cr6+) were targeted. The risk assessment was conducted on inhalation exposure for five age groups, and the excess cancer risk and hazard quotient were calculated. Results: In the risk assessment of exposure to heavy metals in PM2.5, As, Cd, and Cr6+ exceeded the risk tolerance standard of 10-6 for carcinogenic hazards. The highest hazard levels were observed in Onsan and Mipo industrial complexes. In the case of non-carcinogenic hazards, Mn was identified as exceeding the hazard tolerance of 1, and it showed the highest hazard in the Ulsan Industrial Complex. Conclusions: This study presented a detailed health risk from exposure to heavy metals in PM2.5 by industrial complexes located in Ulsan among five age groups. It is expected to be utilized as the basis for preparing damage control and industrial emission reduction measures against PM2.5 exposure at the Ulsan Industrial Complex.

Evaluation on Damage Behavior of Al-4.5%Mg-0.6%Mn Al Alloy with Potentiostatic Experiment Time (Al-4.5%Mg-0.6%Mn 알루미늄 합금의 정전위 시간 변수에 따른 손상거동 평가)

  • Kim, Seong-Jong;Woo, Yong-Bin;Han, Min-Su;Jang, Seok-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.569-576
    • /
    • 2012
  • In general, aluminum alloys forms the passive film($Al_2O_3$, $Al_2O_3{\cdot}3H_2O$) in neutral solution. However, the passive film created on the surface will be destroyed by chloride ions contained in sea water so the corrosion will occur. In this study, in order to solve the problem of corrosion under a seawater environment, potentiostatic protection techniques were applied to Al-4.5%Mg-0.6%Mn aluminum alloy in seawater. At polarization experiments, active state were observed at anodic polarization and concentration polarization by reduction of dissolves oxygen and activation polarization were found at anodic polarization. As a results of potentiostatic experiment, calcareous deposit were created much more as applying time increase from the turning point of the concentration polarization and activation polarization and crevice corrosion was partially observed between calcareous deposit and surface of base metal. Overall potentiostatic anodic polarization experiment was difficult to apply potentiostatic corrosion protection technology by occurrence of active state, whereas potentiostatic cathodic polarization experiment examined optimum corrosion protection condition of -1.1 V~-0.75 V within the range of concentration polarization considered various applying time.

Spectral Properties of the Sound From the Mechanical Valve Employed in an Implantable Biventricular Assist Device (이식형 양심실 보조 장치에 사용된 기계식 판막의 음향 스펙트럼 특성)

  • 최민주;이서우;이혁수;민병구
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.5
    • /
    • pp.439-448
    • /
    • 2001
  • This paper considers the acoustical characteristics of the closing click sounds of the mechanical valves employed in an implantable biventricular assist device (BYAD) and their re1evance to the Physical states of the valved. Bj rk Shiley Convexo Concave tilting disk valve was chosen for the study and acoustic measurement was made for the BYAD operated in a mock circulatory system as well as implanted in an animal (sheep). In the BYAD operated in the mock circulatory system. three different states of the valve were examined, ie. normal. mechanically damaged. pseudo-thrombus attached. Microphone measurement for the BVAD implanted in the animal was carried out for five days at a regular time interval from one day after implantation. Characteristic spectrum of the sound from the valve was estimated using Multiple Signal Classification (MUSIC) in which the optimal order was determined according to Bayesian Information Criterion (BIC) . It was observed that the mechanical damage of the valve resulted in changes of the structure of the acoustic spectrum. In contrast. the thrombus formed on the valve did not change much the basic structure of the spectrum but brought about altering the spectral Peak frequencies and energies. Maximum spectral Peak (MSP) with the greatest energy was seen at 2 kHz for the normal valve and it was shifted to 3 kHz for the calve attaching the Pseudo-thrombus. Unlike the normal valve, strong spectral Peak appeared around 7 kHz in the sound from the valve mechanically damaged. In the case of the BYAD implanted in the animal. as the thrombus grew, acoustic energy was reduced relatively more in the low frequency components (〈 2 kHz) and the frequencies of the 1st, 2nd and 3rd MSP were increased little. The thrombus formation would result in reduction in both the variability of the 1st, 2nd and 3rd MSP and the value of the BIC optimal order.

  • PDF

Determination of optimum protection potential for cathodic protection of offshore wind-turbine-tower steel substructure by using potentiostatic method (정전위법에 의한 해상풍력 타워 구조물용 강재의 음극방식을 위한 최적방식전위 결정)

  • Lee, Jung-Hyung;Jung, Kwang-hu;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.230-237
    • /
    • 2017
  • In this study, electrochemical methods were used to determine the optimum protection potential of S355ML steel for the cathodic protection of offshore wind-turbine-tower substructures. The results of potentiodynamic polarization experiments indicated that the anodic polarization curve did not represent a passivation behavior, while under the cathodic polarization concentration, polarization was observed due to the reduction of dissolved oxygen, followed by activation polarization by hydrogen evolution as the potential shifted towards the active direction. The concentration polarization region was found to be located between approximately -0.72 V and -1.0 V, and this potential range is considered to be the potential range for cathodic protection using the impressed current cathodic protection method. The results of the potentiostatic experiments at various potentials revealed that varying current density tended to become stable with time. Surface characterization after the potentiostatic experiment for 1200 s, by using a scanning electron microscope and a 3D analysis microscope confirmed that corrosion damage occurred as a result of anodic dissolution under an anodic polarization potential range of 0 to -0.50 V, which corresponds to anodic polarization. Under potentials corresponding to cathodic polarization, however, a relatively intact surface was observed with the formation of calcareous deposits. As a result, the potential range between -0.8 V and -1.0 V, which corresponds to the concentration polarization region, was determined to be the optimum potential region for impressed current cathodic protection of S355ML steel.

Optically Controlled Silicon MESFET Modeling Considering Diffusion Process

  • Chattopadhyay, S.N.;Motoyama, N.;Rudra, A.;Sharma, A.;Sriram, S.;Overton, C.B.;Pandey, P.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.196-208
    • /
    • 2007
  • An analytical model is proposed for an optically controlled Metal Semiconductor Field Effect Transistor (MESFET), known as Optical Field Effect Transistor (OPFET) considering the diffusion fabrication process. The electrical parameters such as threshold voltage, drain-source current, gate capacitances and switching response have been determined for the dark and various illuminated conditions. The Photovoltaic effect due to photogenerated carriers under illumination is shown to modulate the channel cross-section, which in turn significantly changes the threshold voltage, drainsource current, the gate capacitances and the device switching speed. The threshold voltage $V_T$ is reduced under optical illumination condition, which leads the device to change the device property from enhancement mode to depletion mode depending on photon impurity flux density. The resulting I-V characteristics show that the drain-source current IDS for different gate-source voltage $V_{gs}$ is significantly increased with optical illumination for photon flux densities of ${\Phi}=10^{15}\;and\;10^{17}/cm^2s$ compared to the dark condition. Further more, the drain-source current as a function of drain-source voltage $V_{DS}$ is evaluated to find the I-V characteristics for various pinch-off voltages $V_P$ for optimization of impurity flux density $Q_{Diff}$ by diffusion process. The resulting I-V characteristics also show that the diffusion process introduces less process-induced damage compared to ion implantation, which suffers from current reduction due to a large number of defects introduced by the ion implantation process. Further the results show significant increase in gate-source capacitance $C_{gs}$ and gate-drain capacitance $C_{gd}$ for optical illuminations, where the photo-induced voltage has a significant role on gate capacitances. The switching time ${\tau}$ of the OPFET device is computed for dark and illumination conditions. The switching time ${\tau}$ is greatly reduced by optical illumination and is also a function of device active layer thickness and corresponding impurity flux density $Q_{Diff}$. Thus it is shown that the diffusion process shows great potential for improvement of optoelectronic devices in quantum efficiency and other performance areas.

A Study on the Removal of Cu Impurity on Si Substrate and Mechanism Using Remote Hydrogen Plasma (리모트 수소 플라즈마를 이용한 Si 기판 위의 Cu 불순물 제거)

  • Lee, Jong-Mu;Jeon, Hyeong-Tak;Park, Myeong-Gu;An, Tae-Hang
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.817-824
    • /
    • 1996
  • Removal of Cu impurities on Si substrates using remote H-plasma was investigated. Si substrates were intentionally contaminated by 1ppm ${CuCI}_{2}$, standard chemical solution. To determine the optimal process condition, remote H-plasma cleaning was conducted varying the parameters of rf power, cleaning time and remoteness(the distance between the center of plasma and the surface of Si substrate). After remote H-plasma cleaning was conducted, Si surfaces were analysed by TXRF(total x-ray reflection fluorescence) and AFM(atomic force microscope). The concentration of Cu impurity was reduced by more than a factor of 10 and its RMS roughness was improved by more than 30% after remote H-plasma cleaning. TXRF analysis results show that remote H-plasma cleaning is effective in eliminating Cu impurity on Si surface when it is performed under the optimal process condition. AFM analysis results also verifies that remote H-plasma cleaning makes no damage to the Si surface. The deposition mechanism of Cu impurity may be explained by the redox potential(oxidation-reduction reaction potential) theory. Based on the XPS analysis results we could draw a conclusion that Cu impurities on the Si substrate are removed together with the oxide by a "lift-off" mechanism when the chemical oxide( which forms when Cu ions are adsorbed on the Si surface) is etched off by reactive hydrogen atoms.gen atoms.

  • PDF

Studies on Uptake by Crops of Lead and Reduction of it's Damage -II. Effect of application of calcium and phosphate materials on Pb Solubility in Soil (농작물(農作物)에 대(對)한 납(pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -II. 석회(石灰)와 인산물질시용(燐酸物質施用)이 토양중(土壤中) 납(pb) 용출량(溶出量)에 미치는 영향(影響))

  • Kim, Kyu Sik;Kim, Bok Young;Han, Ki Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 1986
  • A column test was conducted to find out the effect of application of slaked lime, calcium sulfate, calcium superphosphate, and phosphoric acid on the solubility of lead in soil. The soil was adjusted to 310.8 ppm concentration of Pb and applied with amounts of calcium equivalent to 600, 1000, 2000 ppm as slaked lime; sulfate 144, 288, 432 ppm as calcium sulfate; phosphate 95, 190, 285 ppm as calcium superphosphate and phosphoric acid, respectively. The results obtained are as follows: 1. The increasing application of improvement agents reduced the amounts of water soluble Pb in soil. Phosphoric acid was the most effect among to the treatments. 2. The slaked lime treatment has the highest pH of soil and the lowest at the phosphoric acid one. The soil Eh has a reverse tendency the soil pH. 3. Water soluble Ca, $PO_4$ and $SO_4$ contents increased with increasing application amounts of improvement agents in soil. 4. $1N-NH_4$ OAC soluble Pb content in soil was a decreasing tendency in the order of calcium superphosphate, phosphoric acid, slaked lime, calcium sulfate and control after experiment.

  • PDF

A Causal Analysis of COVID-19 Outbreak on Start-ups and Closures by Industry (COVID-19 발생이 업종별 창업 및 폐업에 미치는 인과 영향 분석)

  • Han, Mumoungcho;Son, Jaeik;Noh, Mijin;Rahman, Tazizur;Kim, Yangsok
    • Smart Media Journal
    • /
    • v.11 no.7
    • /
    • pp.9-18
    • /
    • 2022
  • With the outbreak of COVID-19, the world is in unexpected chaos. In particular, the Korean economy, which has a large number of self-employed people, is experiencing enormous damage from COVID-19. The purpose of this study is to analyze the causal impact of start-ups and closures by industry due to the COVID-19 outbreak. For the causal impact analysis, we collected and analyzed 8,312,224 cases of start-up and closure of 190 businesses that occurred on the local administrative license data public site for 11 years from 2010 to 2020. As a result of the analysis of the causal impact of COVID-19, there were 29 industries in which start-ups increased(increase rate 313.14% ~ 6.39%), 23 industries in which start-ups decreased(decrease rate 70.62% ~ 11.27%), 21 industries in which closures increased(increase rate 157.55% ~ 13.57%), and 18 industries in which business closures decreased(reduction rate 49.45% ~ 12.91%). The industries in which start-ups increased and closures decreased due to the COVID-19 outbreak were disinfection, food transportation, and general sales of health functional food. The industries in where start-ups decreased and closures increased due to the COVID-19 outbreak were youth game providing industry, danran pub business, and general game providing industry. It is expected that the results of this study will help practitioners who manage various infectious diseases to understand the causal impact of infectious disease outbreaks and to prepare countermeasures.

Substrate Selection and Burying Behaviour of Sand-dwelling Endangered Freshwater Fish, Gobiobotia naktongensis (멸종위기 야생생물I급 흰수마자의 모래 선택과 잠입 행동에 관한 연구)

  • Keun-Sik Kim;Moon-Seong Heo;Jin Kim;Chang-Deuk Park;Ju-Duk Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.375-383
    • /
    • 2023
  • To determine the cause of the population decline in Gobiobotia naktongensis, substrate preference and burying behaviour were investigated in this study. In general, the species was shown to prefer a substrate size of 1 mm or less, depending on the flow. In addition, the burying depth varied according to the size of the fish and increased with a decrease in water temperature. Our findings showed that the main cause of the population reduction was the physical changes in the substrate structure due to the dams or barrages construction. Notably, the accumulation of silt and mud in the substrate upon the formation of an upstream lentic water region for structural construction and bed armouring caused by scouring and reduced downstream inflow of fine sediment were deterministic in the fish habitat changes, causing problems in burying. As sand substrate structure is critical for the survival and inhabitation of psammophilous species, efficient strategies should be developed with proper habitat management to reduce the anthropogenic damage