• Title/Summary/Keyword: reduction of construction duration

Search Result 68, Processing Time 0.019 seconds

A Study on Performance Warranty Criteria for Expressway Jointed Concrete Pavements (고속국도 줄눈 콘크리트 포장 성능보증 기준 연구)

  • Yeo, Hyun-Dong;Ahn, Deok-Soon;Suh, Young-Chan;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.65-73
    • /
    • 2011
  • Recently, researches to introduce the performance warranty contract are in progress for quality improvement of road pavements. The performance warranty contract is a type of contract in which contractors guarantee to maintain certain level of performance during a period from completion of construction. The contract use in Europe and the U.S is being increased because it has been known to contribute to improvement of structure quality, reduction of life cycle cost, development of construction techniques, and etc. The research on performance indicators, threshold values, and warranty durations is essential to effectively introduce the contract in Korea. In this study, literatures on the performance warranty contract for concrete pavements of the Minnesota, Indiana, and Florida of the U.S. were reviewed. Major distresses influencing the pavement performance were investigated and analyzed in the jointed concrete pavement sections of 21 Korean expressway routes to be compared to the performance indicators, threshold values, and warranty durations of the states. More accurate comparison is expected by investigation in planned sections for a long time.

Investigation of Early-Age Concrete Strength Development Using Hardening Accelerator (경화촉진제를 사용한 콘크리트의 초기강도 발현 특성 검토)

  • Kim, Gyu-Yong;Kim, Yong-Ro;Park, Jong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, performance of hardening accelerator types which promote setting and hardening of cement has been reviewed in order to develop early age strength of concrete with compressive strength of 21~27 MPa after examination of strength development of the concrete at early age according to curing temperature and unit cement(binder) content. As results, soluble mineral salt showed better hardening acceleration effect than organic salt in the scope of this study. Also, hydration reaction accelerating effect of $C_3S$ by Soluble mineral salt is effective on development of early age compressive strength and it was shown that the Pt's hydration reaction accelerating effect was the best. Construction duration reduction can be expected by securing compressive strength for prevention of early aged freezing damage in 25hour-curing time under curing temperature at $15^{\circ}C$. Also, it was shown that compressive strength of specimen cured at $5^{\circ}C$ was similar with plain specimen cured at $10^{\circ}C$. Therefore, it is expected that fuel costs and carbon dioxide can be reduced when the same construction duration is considered.

Characteristics of Non-point Pollutant from Highway Toll Gate Landuse (고속도로 영업소지역에서의 비점오염물질 유출특성)

  • Lee, Eun-Ju;Son, Hyun-Geun;Kang, Hee-Man;Kim, Lee-Hyung
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.185-192
    • /
    • 2007
  • Newly constructed road is a requisite to be able to carry out BMPs (Best Management Practices) under TMDL(Total Maximum Daily Load) program of the Ministry of Environment. BMPs require pollutant source control during road construction and wash off reduction plan as well as maintenance practices subsequent to construction on the purpose of discharging the minimum wash off non-point source pollutants. The objective of this study is to provide supportive discharged data in evaluating the discharged non-point pollutant load from a highway toll gate area. It can be applied to manage non-point source pollutants on roads. The results validate the first flush phenomenon that it is known to be one of the wash off characteristics in paved area. In addition, the load per unit area and load per unit rainfall duration applying EMC are calculated. The mean load per unit rainfall duration is assessed to be $533.7mg/m^2-hr$ for TSS, $396.2mg/m^2-hr$ for COD, $17.0mg/m^2-hr$ for TN, and $4.8mg/m^2-hr$ for TP. These results show the unitload taken from monitoring are higher than the unit load suggested in the TMDL. It is important to adopt real pollutant unit for road to be able to perform BMP successfully.

  • PDF

Consistency Analysis between Predicted and Measured PM10 and NO2 Air Quality During Environmental Impact Assessment of Linear Construction Projects (선형사업에 대한 환경영향평가 시 대기질 예측치와 실측치의 정합성 분석 - PM10과 NO2를 중심으로 -)

  • No Ol, Lim;Hyun Chan, Sung;Sun Jeong, Kim;Ji Young, Kim;Seong Woo, Jeon
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.378-387
    • /
    • 2022
  • Since air pollution has become a global issue to be managed, the Republic of Korea (ROC) is protecting air quality by predicting the air condition before a construction project starts through EnvironmentalImpact Assessment (EIA) and measuring the air condition afterwards the construction project ends through Post-environmental Impact Assessment (PEIA). The aim of this study consists on verifying the predicted and measured concentration data and analyzing their consistency in order to deduce improvement directions. Linear EIA projects which the investigation during operation period have been concluded between years 2017 and 2019 were used. As a result, the following improvement directions were suggested: reduction of EIA air quality standards, strengthen the management of projects with construction duration longer than 5 years, incorporation of first or second quarter (winter or spring) into the investigation period, consideration of construction equipment or conditions for better prediction. The strength of this study is that we arranged and utilized EIA predicted and PEIA measured data to understand the present EIA procedure and made meaningful suggestions through the consistency analysis contributing to air quality maintenance and investigation methodology enhancement.

Development and Application of Automatic Rainfall Field Tracking Methods for Depth-Area-Duration Analysis (DAD 분석을 위한 자동 강우장 탐색기법의 개발 및 적용)

  • Kim, Yeon Su;Song, Mi Yeon;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.357-370
    • /
    • 2014
  • This study aims to develop a rainfall field tracking method for depth-area-duration (DAD) analysis and assess whether the proposed tracking methods are able to properly estimate the maximum average areal rainfall (MAAR) within the study area during a rainfall period. We proposed three different rainfall field tracking algorithms (Box-tracking, Point-tracking, Advanced point-tracking) and then applied them to the virtual rainfall field with 1hr duration and also compared DAD curves of each method. In addition, we applied the three tracking methods and a traditional GIS-based tool to the typhoon 'Nari' rainfall event of the Yongdam-Dam watershed and then assess applicability of the proposed methods for DAD analysis. The results showed that Box-tracking was much faster than the other two tracking methods in terms of searching for the MAAR but it was impossible to describe rainfall spatial pattern during its tracking processes. On the other hand, both Point-tracking and Advanced point-tracking provided the MAAR by considering the spatial distribution of rainfall fields. In particular, Advanced point-tracking estimated the MAAR more accurately than Point-tracking in the virtual rainfall field, which has two rainfall centers with similar depths. The proposed automatic rainfall field tracking methods can be used as effective tools to analyze DAD relationship and also calculate areal reduction factor.

An Experimental Study on the Early Strength Development Properties of Concrete According to Curing Condition and Used Materials (사용재료 및 양생조건에 따른 콘크리트의 조기강도발현 특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Lee, Ji-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.721-729
    • /
    • 2008
  • The purpose of this study is to investigate the engineering properties of concrete for the early strength development. As a result of reviewing it by establishing each experimental factor and level, the cement had more excellent quality performance in CHC and HESPC than OPC. This study has shown that the PC series admixture was more excellent in side of elapsed time (aging) and early strength development than PNS series admixture. In addition, there was much difference according to the curing temperature, but the early strength development showed the considerable vulnerability in curing temperature below $12^{\circ}C$. To satisfy the strength requirements of 5 MPa/18 hr this study has shown that it needed the curing temperature over $17^{\circ}C$ to the minimum in OPC, over $14^{\circ}C$ in CHC, and over $11^{\circ}C$ in HESPC. On the other hand, as to the strength properties according to W/C, the less W/C was, the more strength development was excellent. If this study is to be used in construction filed on a basis of this result, this researcher is considered as possible of the economic execution of construction by advancing the early strength and by the reduction of construction cost according to shortening construction duration.

A Case study and Analysis on the Up-Lift Pressure Treatment Evaluation of Underground Installations for their Efficient Adoption (사례분석을 통한 효율적 상향수압(Up-Lift Pressure) 처리공법 적용방안에 관한연구 - ◯◯ 상업지역 현장사례 중심으로 -)

  • Ko, Ok-Yeol;Kwon, Oh-Chul;Shim, Jae-Kwang;Park, Tae-Eun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.119-129
    • /
    • 2009
  • Building construction trends have been changed dramatically in terms of size and mass. With the need to maximize land usage, there has been an increase in the construction of high-rise buildings. This affects not only the entire construction duration and cost, but also subsequent construction activities, such as work to increase underground facilities and in reclamation land area construction. These types of site conditions require soft ground reinforcement and the proper uplift water pressure treatment. In general, two kinds of methods have been used for uplift water pressure treatment systems. However, there have been some problems arising as the result of a lack of research and analysis on underground construction techniques, and a reliance on experiments over actual survey and analysis of site conditions. This paper focused on the problems of conventional selection procedure, by analyzing drawings and proposing a kind of modeling for a reasonable procedure. The results were applied to OO project as a sample construction case to be verified in this research. The initial plan in the case project was the Rock Anchor System. However, as there were terrible miscalculations of basic site conditions that had an extraordinary influence on the underground water level, such as the site's proximity to the Han-river, it was necessary to change the plan to include apermanent drainage system. This achieved a direct construction cost reduction \ 406,702,000 and a maximum sayings of 4% of operational cost, based on the 50-year building Life Cycle Cost.

Performance of aerated lightweighted concrete using aluminum lathe and pumice under elevated temperature

  • Mohammad Alharthai;Yasin Onuralp Ozkilic;Memduh Karalar;Md Azree Othuman Mydin;Nebi Ozdoner;Ali Ihsan Celik
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.271-288
    • /
    • 2024
  • The primary objective of this study is to investigate the production and performance characteristics of structural concrete incorporating varying proportions (0%, 25%, and 50% by volume) of pumice stone, as well as aluminum lathe as an additive at 0%, 1%, 2%, and 3%, under fire conditions. The experiment will be conducted over a period of up to 1 hour, at temperatures ranging from 24℃, 200℃, 400℃ and 600℃. For the purpose of this, a total of twelve test samples were manufactured, and then tests of compressive strength (CS), splitting tensile strength (STS), and flexural strength (FS) were performed on these samples.Next, a comparison was made between the obtained values and the influence of temperature. To achieve this objective, the manufactured samples were placed at temperatures of 200℃, 400℃, and 600℃ for a duration of 1 hour, and were subjected to the influence of temperature.These values at 24 ℃ were then contrasted with the CS results obtained from test samples that were subjected to the temperature effect for an hour at 200 ℃, 400 ℃, and 600 ℃. A comprehensive analysis of the test outcomes reveals that the incorporation of aluminum lathe wastes into a mixture results in a significant reduction in the compressive strength of the concrete. As a result of this adjustment, the CS values dropped by 32.93%, 45.70%, and 52.07%, respectively. Furthermore, It was shown that testing the ratios of pumice stone alone resulted in a decrease in CS outcomes. Additionally, it was found that the presence of higher temperatures is clearly the primary factor contributing to the decrease in the strength of concrete. Due to elevated temperatures, the CS values decreased by 19.88%, 28.27%, and 38.61% respectively.After this investigation, an equation that explains the connection between CS and STS was provided through the utilization of the data of the experiments that were carried out.

The Study for the Air Bubble Deterioration of Combined High Flowing Self-Compacting Concrete (병용계 고유동 자기충전콘크리트의 기포저감을 위한 연구)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ruy, Deug-Hyun;Jeong, Jae-Gwon;Kang, Hyun-Jin;Lee, Jae-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.449-452
    • /
    • 2008
  • This study is to manufacture HSCC (High flowing Self-Compacting Concrete) be able to construction without vibration & hardening, and it is stable according to the change of the surface number of aggregate and to examine the factor of reduction occurred before after hardening through the indoor experiment. It is essential to use of the thickener to increase the viscosity in the combined HSCC. In this result, it make more bubbles than HSCC of pulverulent body. The result of study has shown, through the surface air bubble by not passed air bubbles within concrete after hardening, It has bad effect in not only appearance of structures but strength & duration. It is the experiment for air bubble of concrete according to the types of aggregate (fine aggregate), mixing time of concrete, exfoliation, material of model form and so that reduce the air bubble of combined HSCC. Experiments have shown, the effect of exfoliation was bigger than the effect of form for the performance of surface finishing of combined HSCC after hardening according to the exfoliation or material of model form and the opaque guris has good condition of finishing.

  • PDF

Analysis of the Economic Efficiency of the District Heating and Gas Engine Co-Generation System Compared with the Central Heating System (중앙난방방식을 지역난방과 소형열병합난방 방식으로 전환 시 경제성 비교 분석)

  • Kim, Kyu Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.544-551
    • /
    • 2015
  • This study was conducted to determine the LCC of apartment complexes with district heating and a cogeneration system. For the purpose of analyzing LCC according to the size of the apartment complex, 500, 1,500, and 4,000-unit model apartments were selected. Analysis was performed on the design of the heating system and the life cycle cost including total construction cost, maintenance and operation cost for the duration of the project period (15 years). According to the calculated results, 1) The initial cost of the cogeneration system for 500, 1,500, and 4,000-unit apartments is higher than that of the district heating system by 20%, 13%, and 12%, respectively. 2) In the case of the cogeneration system, the payback period by electric generation was found to be 5.21, 4.92 and 4.47 years, and saving cost was calculated to be 29 billion won, 94 billion won and 262 billion won after the payback period for 500, 1,500, and 4,000-unit apartments, respectively. 3) The LCC values of the cogeneration system were 1.12, 1.07 and 1.06 times larger than those of the district system according to the size of the apartment complex. In this study, the district heating system was found to be more efficient than the cogeneration system in terms of LCC reduction. 4) District heating is affected by fuel bills, so energy efficiency should be improved through recovering waste heat (incineration heat, etc.). Also, district cooling should be provided according to heat use to keep the temperature high in winter and low in summer.