• Title/Summary/Keyword: reduction of chromium

Search Result 122, Processing Time 0.031 seconds

Effects of Organic Matter and pH on Chromium Oxidation Potential of Soil

  • Chung, Jong-Bae;Eum, Jin-Sup
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.346-351
    • /
    • 2001
  • Oxidation of Cr(III) to Cr(VI) can increase availability and toxicity of chromium. In this study, possible mechanisms by which pH and organic matter can control the chromium oxidation and reduction in soil system were examined using four soils of different pHs and organic matter contents. Reduction of Mn-oxides occurred in the soils of higher organic matter content (4.0%), but Mn-oxide was quite stable during the incubation in the soil of pH 7.0 and 0.5% organic matter content. Manganese oxides can be reductively dissolved at lower pH and higher organic matter conditions. The soil of pH 7.0 and 4.0% organic matter content showed the highest Cr-oxidation potential. Reduction of soluble Cr(VI) was observed in all the soils examined. The most rapid reduction was found in soil of pH 5.5 and 4.0% organic matter content, but the reduction was slow in soil of pH 7.0 and 0.5% organic matter content. Thus, the reductive capacity of organic matter added soils was much higher as compared to other two soils of lower organic matter content. In all the soils examined, the reductive capacity of soluble chromium was much higher than the oxidative capacity. Organic matter was found to be the most important controlling factor in the chromium oxidation and reduction. Reduction of Cr(VI) to Cr(III) could be a potentially useful remediation or detoxification process, and availability and toxicity of chromium in soil would be controlled by controlling organic matter content and pH of the soils.

  • PDF

Reduction of Hexavalent Chromium on PVC Filters (혜산산업보건학술상 수상논문 - PVC 여과지에 채취된 6가 크롬의 환원)

  • Sin, Yong-Cheol
    • 월간산업보건
    • /
    • s.356
    • /
    • pp.16-25
    • /
    • 2017
  • Chromium exists at various valences, including elemental, trivalent, and hexavalent chromium, and undergoes reduction-oxidation reactions in the environment. Since hexavalent chromium is known as a human carcinogen, it is most important to evaluate the oxidationreduction characteristics of the hexavalent chromium species. Although hexavalent chromium can be reduced to trivalent state, the detailed information on this in workplace environments is limited. The purpose of this study was to investigate hexavalent chromium reduction in time in various conditions. A pilot chrome plating operation was prepared and operated in a laboratory for this study. There was evidence that the hexavalent chromium was reduced by time after mist generation. The percentage ratio (with 95% confidence intervals in parentheses) of hexavalent chromium to total chromium was almost 100% (99.1 ; 102.3) immediately after mist generation, and was reduced to 87.4% (84.8 ; 89.9) at 1 hour and 81.0% (78.3 ; 83.5) at 2 hours, respectively. Another test indicated that hexavalent chromium collected on PVC filters was also reduced by time after sampling. Hexavalent chromium was reduced to 90.8% (88.2 ; 93.3) at 2 hours after sampling. It also was found that hexavalent chromium was reduced during storage in air. It is recommended that air samples of hexavalent chromium be protected against reduction during storage.

  • PDF

Reduction Behavior of Self-Reducing Pellets of Chromite and Si Sludge with and without Carbon

  • Jung, Woo-Gwang;Hossain, Sakib Tanvir;Kim, Jong-Ho;Chang, Young-Chul
    • Korean Journal of Materials Research
    • /
    • v.29 no.10
    • /
    • pp.592-602
    • /
    • 2019
  • Feasibility is investigated for reduction of chromium ore by Si sludge with mixed silicothermic and carbothermic reaction. The reduction behavior of chromium ore using Si sludge is investigated precisely to determine the effects of carbon addition, reaction time, and reaction temperature. The pellets are dropped into the furnace after temperature stabilized. As the amount of C addition increases, the amounts of CO and $CO_2$ gas generation increase. After the dropping of the pellets, the pellets are heated and the reaction starts at about 1,573 K or higher. The pellets maintain their shape until 10 min after the drop, and then melted. As the holding time increased, the size of the reduced metal particles increased. The chromium ore is rapidly reduced by the Si sludge, and the slag penetrated into the chromium ore and reduction progressed inside. As the reduction temperature increased, the reaction initiation time is shortened and the reaction fraction of the reduction reaction increased. As the reaction temperature increased, agglomeration of reduced ferrochrome metal is promoted.

Hexavalent Chromium Reduction by Bacteria from Tannery Effluent

  • Batool, Rida;Yrjala, Kim;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.547-554
    • /
    • 2012
  • Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.

Photocatalytic Reduction of Hexavalent Chromium Induced by Photolysis of Ferric/tartrate Complex

  • Feng, Xianghua;Ding, Shimin;Zhang, Lixian
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3691-3695
    • /
    • 2012
  • Photocatalytic reduction of hexavalent chromium (Cr(VI)) in ferric-tartrate system under irradiation of visible light was investigated. Effects of light resources, initial pH value and initial concentration of various reactants on Cr(VI) photocatalytic reduction were studied. Photoreaction kinetics was discussed and a possible photochemical pathway was proposed. The results indicate that Fe(III)-tartrate system is able to rapidly and effectively photocatalytically reduce Cr(VI) utilizing visible light. Initial pH variations resulte in the concentration changes of Fe(III)-tartrate complex in this system, and pH at 3.0 is optimal for Cr(VI) photocatalytic reduction. Efficiency of Cr(VI) photocatalytic reduction increases with increasing initial concentrations of Cr(VI), Fe(III) and tartrate. Kinetics analysis indicates that initial Fe(III) concentration affects Cr(VI) photoreduction most significantly.

Reduction of Chromium (Ⅵ) and Carcinogenesis (6가 크롬의 환원과 발암)

  • 박형숙
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.3
    • /
    • pp.165-174
    • /
    • 2003
  • Cr (Ⅵ) - containing compounds are well-established carcinogens, although the mechanism for chromium - induced carcinogenesis is still not well understood. The reduction of Cr (Ⅵ) to its lower oxidation states, par ticularly Cr (V) and Cr (IV), is an important step for the production of chromium-mediated reactive oxygen species (ROS). The persistent oxidative stress during the reduction process may play a key role in the mechanism of Cr (Ⅵ) -induced carcinogenesis. This paper summarizes recent studies on (1) the reduction of Cr (Ⅵ) to Cr (III) occur by a multiplicity of mechanisms depending on the nature of reducing agents including ascorbate, diol-and thiol-containing molecules, certain flavoenzymes, cell organelles, intact cells, and whole animals; (2) free-radical production with emphasis on hydroxy radical generation via Fenton or Haber-Weiss type reactions; and (3) free radical - induced cellular damage, such at DNA strand breaks, hydroxylation of 2'-deoxyguanosine, and activation of nuclear transcription factor kB.

Reduction of hexavalent chromium by pseudomonas aeruginosa HP014

  • Oh, Young-Sook;Choi, Sung-Chan
    • Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.25-29
    • /
    • 1997
  • Microbial reduction of hexavalent (VI) to trivalent (III) chromium decreases its toxicity by two orders of magnitude. In order to investigate the nature of Cr-reduction, Cr-resistant Pseudomonas aeruginosa HP014 was isolated and tested for its reduction capability. At the concentration of 0.5 mM Cr(VI), cell growth was not inhibited by the presence of Cr(VI) in a liquid medium, and Cr(VI) reduction was accompanied by ell growth. When cell-free extract was tested, the reduction of Cr(VI) showed a saturation kinetics with the maximum specific activity of 0.33 .mu.mol min$\^$-1/ mg$\^$-1/ cell protein, and an apparent K. of 1.73 mM Cr(VI). The activity required either NADH or NADPH as an electron donor. However, NADPH gave 50% as mush activity as sequently the supernatant and pelleted membrane fractions were tested for Cr(VI) reduction activity. The supernatant of the centrifugation showed almost the same Cr(VI) reduction activity as compared with that of the cell-free extract, indicating that the Cr(VI)-reducing activity of P. aeruginosa HP-14 is due to soluble enzyme. Moreover, the activity appeared to be the highest among the known activities, suggesting that the strain might be useful for remediation of Cr(VI)-contaminated sites.

  • PDF

Membrane-Associated Hexavalent Chromium Reductase of Bacillus megaterium TKW3 with Induced Expression

  • Cheung K.H.;Lai H.Y.;Gu Ji-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.855-862
    • /
    • 2006
  • Hexavalent chromium ($Cr^{6+}$) is a highly harmful pollutant, which can be detoxified and precipitated through reduction to $Cr^{3+}$. Bacillus megaterium TKW3 previously isolated from chromium-contaminated marine sediments was capable of reducing $Cr^{6+}$ in concomitance with metalloids ($Se^{4+}$, $Se^{6+}$, and $As^{5+}$). Notwithstanding approximately 50% inhibition, it was the first report of simultaneous bacterial reduction of $Cr^{6+}$ and $Se^{4+}$ (to elemental Se). No significant difference was observed among electron donors (glucose, maltose, and mannitol) on $Cr^{6+}$ reduction by B. megaterium TKW3. The reduction was constitutive and determined to be non-plasmid mediated. Peptide mass fingerprints (PMF) revealed a novel aerobic membrane-associated reductase with $Cr^{6+}$-induced expression and specific reductive activity (in nmol $Cr^{6+}$/mg protein/min) of 0.220 as compared with 0.087 of the soluble protein fraction. Respiratory inhibitor $NaN_3$ did not interfere with the reductase activity. Transmission electron microscopy with energy dispersive X-ray (TEM-EDX) analysis confirmed the aggregation of reduced chromium along the intracellular membrane region. Future identification of the N-terminal amino acid sequence of this reductase will facilitate purification and understanding of its enzymatic action.

Reduction of Hexavalent Chromium Collected on PVC Filters in Field Electroplating Process (현장 도금 공정에서 PVC 여과지에 채취된 6가 크롬의 환원)

  • Shin Yong Chul;Paik Nam Won;Yi Gwang Yong;Lee Byung Kyu;Lee Ji Tae
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.1
    • /
    • pp.41-49
    • /
    • 2002
  • Recently, pilot studies showed an evidence of reduction of airborne hexavalent chromium, Cr(VI), on PVC filter during air sampling and storage. However, the information on this in the field was limited. Thus, we studied the reduction behaviors of airborne Cr(VI) on PVC filters during sampling and storage at three field electroplating operations. Regression between sampling time and the reduction (ratio of Cr(VI) to total Cr concentrations) was not statistically significant (p>0.05). However, the reductions in samples collected for 240 ~ 340 minutes were significantly higher than those for 30 - 60 minutes. On the other hand, another experiment showed a good correlation (r=0.96) between sampling time and the reduction without an exceptional value. Storage temperature was not a factor affecting the reduction of Cr(VI) collected on PVC filter. The loss of Cr(VI) samples stored in alkali solution (2% NaOH/3% Na$_2$CO$_3$) was significantly lower than that stored in vial according to NIOSH method (p<0.05). Thus, dipping Cr(VI) samples into alkali solution was a storage method to minimize tile reduction.

Redox Kinetics of Chromium(Ⅵ) in the Presence of Aquifer Materials Amended with Ferrous Iron

  • Hwang, Inseong;Batchelor, Bill
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.118-121
    • /
    • 2002
  • The kinetics and stoichiometry of the reduction of hexavalent chromium (Cr(Ⅵ)) with ferrous iron (Fe(II)) were examined in systems with and without aquifer solids. Cr(Ⅵ) reduction was rapid in the absence of solids, but demonstrated slower and more complex kinetics in the presence of aquifer solids. The aquifer solids removed Fe(II) from solution and a portion of the reducing capacity of Fe(II) was transferred to the aquifer solids. The solid phases were then able to continue to remove Cr(Ⅵ). This suggests in-situ treatment of Cr(Ⅵ) by Fe(II) injection would be feasible in the aquifer environment. In general, re-oxidation of reduced chromium by molecular oxygen was not observed in our systems over time periods of nearly one year.

  • PDF