DOI QR코드

DOI QR Code

Reduction Behavior of Self-Reducing Pellets of Chromite and Si Sludge with and without Carbon

  • Jung, Woo-Gwang (School of Materials Science and Engineering, Kookmin University) ;
  • Hossain, Sakib Tanvir (Department of Materials Science and Engineering, Graduate School of Kookmin University) ;
  • Kim, Jong-Ho (Advanced Metals Research Group, Research Institute of Industrial Science and Technology (RIST)) ;
  • Chang, Young-Chul (Department of Mechatronics Engineering, Korea University of Technology and Education)
  • Received : 2019.07.05
  • Accepted : 2019.09.11
  • Published : 2019.10.27

Abstract

Feasibility is investigated for reduction of chromium ore by Si sludge with mixed silicothermic and carbothermic reaction. The reduction behavior of chromium ore using Si sludge is investigated precisely to determine the effects of carbon addition, reaction time, and reaction temperature. The pellets are dropped into the furnace after temperature stabilized. As the amount of C addition increases, the amounts of CO and $CO_2$ gas generation increase. After the dropping of the pellets, the pellets are heated and the reaction starts at about 1,573 K or higher. The pellets maintain their shape until 10 min after the drop, and then melted. As the holding time increased, the size of the reduced metal particles increased. The chromium ore is rapidly reduced by the Si sludge, and the slag penetrated into the chromium ore and reduction progressed inside. As the reduction temperature increased, the reaction initiation time is shortened and the reaction fraction of the reduction reaction increased. As the reaction temperature increased, agglomeration of reduced ferrochrome metal is promoted.

Keywords

References

  1. A. Goetzberger, C. Hebling and H. W. Schock, Mater. Sci. Eng., 40, 1 (2003). https://doi.org/10.1016/S0927-796X(02)00092-X
  2. D. Sarti and R. Einhaus, Sol. Energy Mater. Sol. Cells, 72, 27 (2002). https://doi.org/10.1016/S0927-0248(01)00147-7
  3. T. Surek, J. Cryst. Growth, 275, 292 (2005). https://doi.org/10.1016/j.jcrysgro.2004.10.093
  4. M.A. Green, K. Emery, D.L. King, Y. Hisikawa and W. Warta, Prog. Photovoltaics Res. Appl., 14, 45 (2006). https://doi.org/10.1002/pip.686
  5. The First Step to Technology Valuation, Wafer, The Ministry of Trade, Industry and Energy of Korea, (2008).
  6. The Export-Import Bank of Korea, Overseas Economic Research Institute, Global Renewable Energy Market Prospects. Retrieved 2016 from http://choonsik.blogspot.kr/2014/09/blog-post82.html.
  7. T. Y. Wang, Y. C. Lin, C. Y. Tai, R. Sivakumar, D. K. Rai and C. W. Lan, J. Cryst. Growth, 310, 3403 (2008). https://doi.org/10.1016/j.jcrysgro.2008.04.031
  8. NPD Solarbuzz. Retrieved 2016 from http://solarpowerworldonline.com/2014/02/global-demand-polysiliconsurge-25-percent-2014/.
  9. E. Prud'homme, E. Joussein and S. Rossignol, Eur. Phys. J. Special Topics, 224, 1725 (2015). https://doi.org/10.1140/epjst/e2015-02494-7
  10. Y. Liu, J. Kong, Y. Zhuang and P. Xing, J. Cleaner Prod., 224, 709 (2019). https://doi.org/10.1016/j.jclepro.2019.03.187
  11. T. Y. Wang, Y. C. Lin, C. C. Fei, M. Y. Tseng and C. W. Lan, Prog. Photovoltaics Res. Appl., 17, 155 (2009). https://doi.org/10.1002/pip.863
  12. Y. C. Lin, T. Y. Wang, C. W. Lan and C.Y. Tai, Powder Technol., 200, 216 (2010). https://doi.org/10.1016/j.powtec.2010.02.028
  13. J. Y. Kim, U. S. Kim, K. T. Hwang, W. S. Cho and K. J. Kim, J. Korean Ceram. Soc., 48, 189 (2011). https://doi.org/10.4191/KCERS.2011.48.2.189
  14. Y.-C. Lin and C.Y. Tai, Sep. Purif. Technol., 74, 170 (2010). https://doi.org/10.1016/j.seppur.2010.06.002
  15. E. Uslu and R. H. Eric, J. S. Afr. Inst. Min. Metall., 91, 397 (1991).
  16. M. Kekkonen, Y. Xiao and L. Holappa, in Proceedings of INFACON 7 (Trondheim, Norway, June 11-14, 1995). ed. J. Kr. Tuset, H. Tveit, I. G. Page (The Norwegian Ferroalloy Research Organization (FFF)) p.351.
  17. G. Kapure, V. Tathavadkar, C. B. Rao, S. M. Rao and K. S. Raju, in Proceedings of The Twelfth International Ferroalloys Congress, Sustainable Future (Helsinki, June 6-9, 2010). p.293.
  18. Y. Wang, L. Wang, J. Yu and K. C. Chou, J. Min. Metall. Sect. B-Metall. 50B, 15 (2014).
  19. A. Atasoy and F. R. Sale, Solid State Phenomena, 147-149, 752 (2009). https://doi.org/10.4028/www.scientific.net/SSP.147-149.752
  20. D. Chakraborty, S. Ranganathan and S. N. Sinha, Metall. Mater. Trans. B, 36B, 437 (2005).
  21. P. Weber and R. H. Eric, Metall. Mater. Trans. B, 24B, 987 (1993).
  22. R. H. Nafziger, J. E. Tress and J. I. Paige, Metall. Trans. B, 10B, 5 (1979).
  23. O. Soykan, R. Eric and R. King, Metall. Mater. Trans. B, 22B, 53 (1991).
  24. H. Weitz and A. M. Garbers-Craig, Miner. Process. Extractive Metall. Rev., 37, 168 (2016). https://doi.org/10.1080/08827508.2016.1168413
  25. P. W. Han, P. X. Chen, S. J. Chu, L. B. Liu and R. Chen, in Proceedings of The Fourteenth International Ferroalloys Congress INFACON XIV (Kiev, Ukraine, May 31-June 4, 2015). p.422.
  26. J. H. Kim, E. J. Jung, G.-G. Lee, W.-G. Jung, S. J. Yu and Y. C. Chang, Korean J. Mater. Res., 27, 263 (2017). https://doi.org/10.3740/MRSK.2017.27.5.263
  27. W.-G. Jung, G.-S. Back, F. T. Johra, J.-H. Kim, Y.-C. Chang and S.-J. Yoo, J. Min. Metall. Sect. B., 54B, 29 (2018).
  28. W.-G. Jung, S. T. Hossain, F. T. Johra, J.-H. Kim and Y.-C. Chang, J. Iron Steel Res. Int., 26, 806 (2019). https://doi.org/10.1007/s42243-018-0195-z
  29. JCPDS-International Centre for Diffraction Data, Card No. 22-1107, ICDD, Newton Square, PA, USA (1996).
  30. FactSage 7.0, http://www.factsage.com. Center for Research in Computational Thermochemistry, Montreal, Canada (2015).
  31. A. P. Zambrano, C. Takano, M. B. Mourao, Y. S. Tagusagawa and Y. Iguchi, ISIJ Int., 51, 1296 (2011). https://doi.org/10.2355/isijinternational.51.1296
  32. A. P. Zambrano, C. Takano, A. E. A. Nogueira, M. B. Mourao and S. Y. Tagusagawa, IJRRAS, 13, 330 (2012).
  33. Y. L. Ding, N. A. Warner, Ironmaking Steelmaking, 24, 224 (1997).
  34. A. B. Harar-Yoruc, Miner. Metall. Process., 24, 115 (2007).
  35. G. U. Kapure, C. B. Rao, V. D. Tathavadkar and R. Sen, Ironmaking Steelmaking, 38, 590 (2011). https://doi.org/10.1179/1743281211Y.0000000028
  36. J. Pan, C. Yang and D. Zhu, ISIJ Int., 55, 727 (2015). https://doi.org/10.2355/isijinternational.55.727