• Title/Summary/Keyword: reduction kinetics

Search Result 242, Processing Time 0.03 seconds

Reduction Characteristics of Triclosan using Zero-valent Iron and Modified Zero-valent Iron (영가철 및 개질 영가철을 이용한 triclosan의 환원분해 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.859-868
    • /
    • 2017
  • In this study, the reductive dechlorination of triclosan using zero-valent iron (ZVI, $Fe^0$) and modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium-coated iron (Pd/Fe)) was experimentally investigated, and the reduction characteristics were evaluated by analyzing the reaction kinetics. Triclosan could be reductively decomposed using zero-valent iron. The degradation rates of triclosan were about 50% and 67% when $Fe^0$ and Aw/Fe were used as reductants, respectively, after 8 h of reaction. For the Pd/Fe system, the degradation rate was about 57% after 1 h of reaction. Thus, Pd/Fe exhibited remarkable performance in the reductive degradation of triclosan. Several dechlorinated intermediates were predicted by GC-MS spectrum, and 2-phenoxyphenol was detected as the by-product of the decomposition reaction of triclosan, indicating that reductive dechlorination occurred continuously. As the reaction proceeded, the pH of the solution increased steadily; the pH increase for the Pd/Fe system was smaller than that for the $Fe^0$ and Aw/Fe system. Further, zero-order, first-order, and second-order kinetic models were used to analyze the reaction kinetics. The first-order kinetic model was found to be the best with good correlation for the $Fe^0$ and Aw/Fe system. However, for the Pd/Fe system, the experimental data were evaluated to be well fitted to the second-order kinetic model. The reaction rate constants (k) were in the order of Pd/Fe > Aw/Fe > $Fe^0$, with the rate constant of Pd/Fe being much higher than that of the other two reductants.

Low-Pressure Plasma Inactivation of Escherichia coli (감압 플라즈마를 이용한 Escherichia coli 살균)

  • Mok, Chulkyoon;Song, Dong-Myung
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.202-207
    • /
    • 2010
  • Low-pressure plasmas (LPPs) were generated with different gases such as air, oxygen and nitrogen, and their inactivation effects against Escherichia coli were compared in order to evaluate the potential as a non-thermal microbial disinfection technology. Homogeneous plasmas were generated under low pressure below 1 Torr at gas flow rate of 350 mL/min regardless the types of gases. Temperature increases by LPPs were not detrimental showing less than ${10^{\circ}C}$ and ${25^{\circ}C}$ increases after 5 and 10 min treatments, respectively. The smallest temperature increase was observed with air LPP, and followed by oxygen and nitrogen LPPs. More than 5 log reduction in E. coli was achieved by 5 min LPP treatment but the destruction effect was retarded afterward. The LPP inactivation was represented by a iphasic first order reaction kinetics. The highest inactivation rate constant was achieved in air LPP and followed by oxygen and nitrogen LPPs. The small D-values of the LPP also supported its potentialities as a non-thermal food surface disinfection technology in addition to the substantial microbial reduction of more than 5 logs.

Ethanol inhibits Kv7.2/7.3 channel open probability by reducing the PI(4,5)P2 sensitivity of Kv7.2 subunit

  • Kim, Kwon-Woo;Suh, Byung-Chang
    • BMB Reports
    • /
    • v.54 no.6
    • /
    • pp.311-316
    • /
    • 2021
  • Ethanol often causes critical health problems by altering the neuronal activities of the central and peripheral nerve systems. One of the cellular targets of ethanol is the plasma membrane proteins including ion channels and receptors. Recently, we reported that ethanol elevates membrane excitability in sympathetic neurons by inhibiting Kv7.2/7.3 channels in a cell type-specific manner. Even though our studies revealed that the inhibitory effects of ethanol on the Kv7.2/7.3 channel was diminished by the increase of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the molecular mechanism of ethanol on Kv7.2/7.3 channel inhibition remains unclear. By investigating the kinetics of Kv7.2/7.3 current in high K+ solution, we found that ethanol inhibited Kv7.2/7.3 channels through a mechanism distinct from that of tetraethylammonium (TEA) which enters into the pore and blocks the gate of the channels. Using a non-stationary noise analysis (NSNA), we demonstrated that the inhibitory effect of ethanol is the result of reduction of open probability (PO) of the Kv7.2/7.3 channel, but not of a single channel current (i) or channel number (N). Finally, ethanol selectively facilitated the kinetics of Kv7.2 current suppression by voltage-sensing phosphatase (VSP)-induced PI(4,5)P2 depletion, while it slowed down Kv7.2 current recovery from the VSP-induced inhibition. Together our results suggest that ethanol regulates neuronal activity through the reduction of open probability and PI(4,5)P2 sensitivity of Kv7.2/7.3 channels.

A Study on the Resource Development by Heat Dissolution in Electric Arc Furnace of Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생된 Clinker의 전기로에서의 가열용해에 의한 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Akio Honjo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • In general, when scrap is dissolved in an electric arc furnace, the amount of electric furnace steel dust (EAFD) generated is about 1.5% of the scrap charge amount, and the electric furnace steel dust collected by the bag filter is charged into the Rotary Kiln or Rotary Hearth Furnace (RHF), and the zinc component is recovered as crude zinc oxide, at which time a clinker of Fe-Base is generated. In this research, first, for the efficient resource conversion of electric furnace steel dust, a reduction and roasting experiment was conducted and the reaction kinetics was examined. As a result of the experiment, it was observed that the reduction and roasting reaction was actively conducted in the range of 1100~1150℃, and melting occurred in the range of 1250℃. In the past, this clinker was widely used as a roadbed material for road construction and an Fe-Source for cement production, but in recent years, it has been mainly reclaimed due to strengthening environmental standards. However, landfill treatment is by no means a desirable treatment method due to environmental pollution caused by leachate, expensive landfill costs, and waste of Fe resources. Therefore, in order to more actively recycle the Fe component in the clinker, first of all the clinker was pulverized into an optimal particle size, and anthracite and binder (starch) were added to the magnetic material obtained by specific gravity and magnetic separation for briquet. As a experimental results, it was possible to efficiently separate clinker as Fe component and other slag component by specific gravity and magnetic force. As a results of loading and dissolving the manufactured briquet clinker in an electric arc furnace, it was observed that the unit of power and production yield were clearly improved and the carbon addition effect in molten metal was also somewhat.

Fermentation Kinetics for Production of Carotenoids by ${\beta}$-ionone Resistant Mutant of Xanthophyllomyces dendrorhous (Xanthophyllomyces dendrorhous 변이군주에 의한 Carotenoids 생산 발효의 특성 연구)

  • Park, Ki-Moon;Kim, Young-Jun;Song, Min-Woo;Kang, Seog-Jin;Lee, Jae-Heung
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.286-291
    • /
    • 2006
  • Various ${\beta}$-ionone resistant mutants were isolated from the wild-type red yeast Xanthophyllomyces dendrorhous KCTC 7704. Although the growth of X. dendrorhous KCTC 7704 was strongly inhibited at 0.025 mM ${\beta}$-ionone, one of the ${\beta}$-ionone resistant mutants isolated at 0.1 mM ${\beta}$-ionone by NTG mutagenesis showed rather 70% of relative survival at 0.15 mM ${\beta}$-ionone. Fermentation kinetics study with the mutant was carried out at $20^{\circ}C$ for 4 days in 300-mL baffled flasks. The mutant yielded up to 2.3-fold higher carotenoids content(viz. $1.2{\mu}g$ of total carotenoids per mg of dry cells) compared with the wild-type strain. The production of metabolites such as organic acids could be neglected. Studies on the kinetics with various carbon substrates revealed both an increase in final dry cell mass and a higher total carotenoids content in cell mass with glucose when compared to fructose or sucrose. As a further part of study, the effect of pH on the fermentation kinetics was investigated in glucose-limited chemostat at a dilution rate of $0.04h^{-1}$. When compared to steady-state kinetic parameters obtained at pH 4.0, a significant reduction in cell concentration at pH 3.0 and a lower carotenoids content at pH 5.2 were evident.

Effect of feeding garlic leaves on rumen fermentation, methane emission, plasma glucose kinetics, and nitrogen utilization in sheep

  • Panthee, Arvinda;Matsuno, Ayana;Al-Mamun, Mohammad;Sano, Hiroaki
    • Journal of Animal Science and Technology
    • /
    • v.59 no.6
    • /
    • pp.14.1-14.9
    • /
    • 2017
  • Background: Garlic and its constituents are reported to have been effective in reducing methane emission and also influence glucose metabolism in body; however, studies in ruminants using garlic leaves are scarce. Garlic leaves contain similar compounds as garlic bulbs, but are discarded in field after garlic bulb harvest. We speculate that feeding garlic leaves might show similar effect as garlic constituents in sheep and could be potential animal feed supplement. Thus, we examined the effect of freeze dried garlic leaves (FDGL) on rumen fermentation, methane emission, plasma glucose kinetics and nitrogen utilization in sheep. Methods: Six sheep were fed Control diet (mixed hay and concentrate (60:40)) or FDGL diet (Control diet supplemented with FDGL at 2.5 g/kg $BW^{0.75}$ of sheep) using a crossover design. Methane gas emission was measured using open-circuit respiratory chamber. Plasma glucose turnover rate was measured using isotope dilution technique of [$U-^{13}C$]glucose. Rumen fluid, feces and urine were collected to measure rumen fermentation characteristics and nitrogen utilization. Result: No significant difference in rumen fermentation parameters was noticed except for rumen ammonia tended to be higher (0.05 < P < 0.1) in FDGL diet. Methane emission per kg dry matter ingested and methane emission per kg dry matter digested were lower (P < 0.05) in FDGL diet. Plasma glucose concentration was similar between diets and plasma glucose turnover rate tended to be higher in FDGL diet (0.05 < P < 0.1). Nitrogen retention was higher (P < 0.05) and microbial nitrogen supply tended to be higher (0.05 < P < 0.1) in FDGL diet. Conclusion: FDGL diet did not impair rumen fermentation, improved nitrogen retention; while absence of significant results in reduction of methane emission, glucose turnover rate and microbial nitrogen supply, further studies at higher dose would be necessary to conclude the merit of FDGL as supplement in ruminant feedstuff.

Atmospheric Effects on Growth Kinetics and Electronic Properties of Passive Film of Aluminum in Borate Buffer Solution (Borate 완충용액에서 알루미늄의 산화피막의 생성과정과 전기적 성질에 대한 대기의 영향)

  • Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.169-176
    • /
    • 2016
  • In a borate buffer solution, the growth kinetics and the electronic properties of passive film on aluminum were investigated, using the potentiodynamic method, chronoamperometry, and multi-frequency electrochemical impedance spectroscopy. The corrosion of aluminum was heavily influenced by the degree of oxygen concentration because of the increasing reduction current. The oxide film formed during the passivation process of aluminum has showed the electronic properties of n-type semiconductor, which follow from the Mott-Schottky equation. It was found out that the passive film (Al(OH)3) of Al formed in the low electrode potential changes to Al2O3 while the electrode potential increases. The growth kinetics data as measured by chronoamperometry suggests a mechanism in which the growth of the film of Al2O3 is determined by field-assisted transport of ions through the film.

Material Life Cycle Assessment on Mg2NiHx-CaF2 Composites (Mg2NiHx-CaF2 수소 저장 복합체의 물질 전과정 평가)

  • HWANG, JUNE-HYEON;SHIN, HYO-WON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.2
    • /
    • pp.148-157
    • /
    • 2022
  • Research on hydrogen storage is active to properly deal with hydrogen, which is considered a next-generation energy medium. In particular, research on metal hydride with excellent safety and energy efficiency has attracted attention, and among them, magnesium-based hydrogen storage alloys have been studied for a long time due to their high storage density, low cost, and abundance. However, Mg-based alloys require high temperature conditions due to strong binding enthalpy, and have many difficulties due to slow hydrogenation kinetics and reduction in hydrogen storage capacity due to oxidation, and various strategies have been proposed for this. This research manufactured Mg2Ni to improve hydrogenation kinetics and synthesize about 5, 10, 20 wt% of CaF2 as a catalyst for controlling oxidation. Mg2NiHx-CaF2 produced by hydrogen induced mechanical alloying analyzed hydrogenation kinetics through an automatic PCT measurement system under conditions of 423 K, 523 K, and 623 K. In addition, material life cycle assessment was conducted through Gabi software and CML 2001 and Eco-Indicator 99' methodology, and the environmental impact characteristics of the manufacturing process of the composites were analyzed. In conclusion, it was found that the effects of resource depletion (ARD) and fossil fuels had a higher burden than other impact categories.

Effect of Pressure and Solvent Dielectric Constant on the Kinetic Constants of Trypsin-Catalyzed Reaction. (Trypsin 반응에 대한 용매의 유전상수 및 압력의 영향)

  • Park, Hyun;Chi, Young-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Electrostatic forces contribute to the high degree of enzyme transition state complementarity in enzyme catalyzed reaction and such forces are modified by the solvent through its dielectric constant and polar properties. The contributions of electrostatic interaction to the formation of ES complex and the stabilization of transition state of the trypsin catalyzed reaction were probed by kinetic studied with high pressure and solvent dielectric constant. A good correlation has been observed between the increase of catalytic efficiency of trypsin and the decrease of solvent dielectric constant. Activation volume linearly decreased as the dielectric constant of solvent decreased, which means the increase in the reaction rae. Moreover, the decrease of activation volume by lowering the solvent dielectric constant implies a solvent penetration of the active with and a reduction of electrostatic energy for the formation of dipole of the active site oxyanion hole. When the 야electric constant of the solvents was lowered to 4.7 unit, the loss of activation energy and that of free energy of activation were 2.262 KJ/mol and 3.169 KJ/mol, respectively. The results of this study indicate that the high pressure kinetics combined with solvent effects can provide unique information on enzyme reaction mechanisms, and the controlling the solvent dielectric constant can stabilize the transition state of the trypsin-catalyzed reaction.

  • PDF

Textile dye wastewater treatment using coriolus versicolor

  • Sathian, S.;Radha, G.;Priya, V. Shanmuga;Rajasimman, M.;Karthikeyan, C.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.153-166
    • /
    • 2012
  • Decolourization potential of white rot fungal organism, coriolus versicolor, was investigated in a batch reactor, for textile dye industry wastewater. The influence of process parameters like pH, temperature, agitation speed and dye wastewater concentration on the decolourization of textile dye wastewater was examined by using Response surface methodology (RSM). The maximum decolourization was attained at: pH- 6.8, temperature - $27.9^{\circ}C$, agitation speed - 160 rpm and dye wastewater concentration - 1:2. From the analysis of variance (ANOVA) results it was found that, the linear effect of agitation speed and dye wastewater concentration were significant for the decolourization of textile dye wastewater. At these optimized condition, the maximum decolourization and chemical oxygen demand (COD) reduction was found to be 64.4% and 79.8% respectively. Various external carbon sources were tried to enhance the decolourization of textile dye wastewater. It was observed that the addition of carbon source enhances the decolourization of textile dye wastewater. Kinetics of textile dye degradation process was studied by first order and diffusional model. From the results it was found that the degradation follows first order model with $R^2$ value of 0.9430.