• Title/Summary/Keyword: reduction efficiency of pollutants

Search Result 127, Processing Time 0.023 seconds

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan;Safak, Toygun;Kalpakli, Yasemen;Akgun, Mesut
    • Advances in environmental research
    • /
    • v.4 no.1
    • /
    • pp.25-38
    • /
    • 2015
  • Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment (Fe(II)에 의해 활성화된 과황산을 이용한 페놀 오염 퇴적물 처리 타당성 평가)

  • Jo, Jae Hyun;Yoon, Seong-Eun;Kim, Jae-Moon;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.77-86
    • /
    • 2020
  • Persulfate-based advanced oxidation processes (AOPs) can oxidize various organic pollutants. In this study, persulfate/Fe(II) system was utilized in phenol removal, and the effect of various organic and inorganic chelators on Fe(II)-medicated persulfate activation was investigated. The feasibility of persulfate/Fe(II)/chelator in cleanup of phenol-contaminated sediment was confirmed through toxicity assessment. In persulfate/Fe(II) conditions, the rate and extent of phenol removal increased in proportion to persulfate concentration. In chelator injection condition, the rate of phenol removal was inversely proportional to chelator concentration when it was injected above optimum ratio. Thiosulfate showed greater chelation tendency with persulfate than citrate and interfered with persulfate access to Fe(II), making the latter a more suitable chelator for enhancing persulfate activation. In contaminated clay sediment condition, 100% phenol removal was obtained within an hour without chelator, with the removal rate increased up to four times as compared to the rate with chelator addition. A clay sediment toxicity assessment at persulfate:Fe(II):phenol 20:10:1 ratio indicated 71.3% toxicity reduction with 100% phenol removal efficiency. Therefore, persulfate/Fe(II) system demonstrated its potential utility in toxicity reduction and cleanup of organic contaminants in sediments.

Air Pollution Protection onboard by Seawater and Electrolyte

  • An Suk-Heon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • This research makes a new attempt to apply the activated seawater by electrolysis in the development of two-stage wet scrubber system to control the exhaust gas of large marine diesel engines. First, with using only seawater that is naturally alkaline (pH typically around 8.1). the $SO_2\;and\;SO_3$ are absorbed by relatively high solubility compared to other components of exhaust pollutants, and PM (Particulate Matter) is removed through direct contact with sprayed seawater droplets. Besides, the electrolyzed alkaline seawater by electrolysis, which contains mainly NaOH together with alkali metal ions $(i.e.\;Na^+,\;Mg^{2+},\;Ca^{2+})$, is used as the absorption medium of NOx and $CO_2$. Especially, to increase NOx absorption rate into the alkaline seawater. nitric oxide (NO) is adequately oxidized to nitrogen dioxide $(NO_2)$ in the acidic seawater, which means both volume fractions are adjusted to identical proportion. The results found that the strong acidic seawater was a valid oxidizer from NO to $NO_2$ and the strong alkaline seawater was effective in $CO_2$ absorption In the scrubber test, the SOx reduction of nearly $100\%$ could be achieved and also led to a sufficientPM reduction. Hence, the author believes that applying seawater and its electrolyte would bring the marine air pollution control system to an economical measure. Additionally it is well known that NOx and SOx concentration has a considerable influence on the $N_2O$ emission of green house gas. Although the $N_2O$ concentration exhausted from diesel engines is not as high, the green house gas effect is around 300 times greater than an equivalent volume of $CO_2$. Therefore, we investigated the $N_2O$ removal efficiency with using the electrolyzed seawater too. Finally this research would also plan to treat the effluent by applying electro-dialysis and electro-flotation technique s in the future.

The Characteristics of Shallow Groundwater in Petroleum Contaminated Site and the Assessment of Efficiency of Biopile by Off-gas Analysis (유류오염지역의 지하수 수질특성과 토양가스 분석을 통한 바이오파일의 효율평가)

  • Cho, Chang-Hwan;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.36-44
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of shallow groundwater from the oil-contaminated site for a long period and to evaluate the applicability of biopile technology to treat the soil excavated from it. The eight monitoring wells were installed in the contaminated site and pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), Temperature and the concentrations of major ions and pollutants were measured. The VOCs in soil gas were monitored during biopile operation and TPH concentration was analyzed at the termination of the experiment. The pH was 6.62 considered subacid and EC was 886.19 ${\mu}S/cm$. DO was measured to be 2.06 mg/L showing the similar characteristic of deep groundwater. ORP was 119.02 mV indicating oxidation state. The temperature of groundwater was measured to be $16.97^{\circ}C$. The piper diagram showed that groundwater was classified as Ca-$HCO_3$ type considered deep groundwater. The ground water concentration for TPH, Benzene, Toluene, Xylene of the first round was slightly higher than that of the second round. The concentration of carbon dioxide of soil gas was increased to 1.3% and the concentration of VOCs was completely eliminated after the 40 days. The TPH concentration showed 98% remediation efficiency after the 90 days biopile operation.

A Study on Estimating Diffuse Pollution Loads Removal by Road Vacuum Cleaning (도로청소에 의한 비점오염부하 삭감량 산정방법 연구)

  • Lee, Taehwan;Cho, Hong-Lae;Jeong, Euisang;Koo, Bhon K.;Park, Baekyung;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.2
    • /
    • pp.123-129
    • /
    • 2017
  • The purpose of this study is to identify potential methodologies to reasonably estimate the effectiveness of road vacuum cleaning in terms of pollution loads reduction. In this context, this study proposes two empirical equations to estimate the amount of diffuse pollution loads removed by road vacuum cleaning. The proposed equations estimate the removed amount of pollution loads respectively taking into consideration of: a) the distance of road vacuum cleaning; and b) the amount of road-deposited sediment(RDS). All of the parameters in these equations were evaluated based on results of field monitoring and laboratory analyses, except for the RDS generation rate. The results of this study suggest that pollutant removal efficiency is 46.3% for $BOD_5$ and 56.4% for TP; discharge ratios for particulate and dissolved $BOD_5$ are 35.0% and 21.2%, respectively; discharge ratios for particulate and dissolved TP are 35.0% and 19.4%, respectively. Average concentrations of pollutants in RDS are $BOD_5$ 977.3 mg/kg and TP 317.6 mg/kg. Some results of a case study imply that both equations can be potentially useful if the adopted parameters are reasonably evaluated. In particular, the RDS generation rate should be evaluated based on monitoring data collected from various road conditions.

A Study on the Direction of the Introduction of Korean Autonomous Co-operation Driving Vehicle (한국형 자율협력주행차량의 도입 방향성에 관한 연구)

  • Lee, Seung-Pil;Kim, Hwan-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.161-162
    • /
    • 2020
  • Major advanced ports around the world are preparing for environmental regulations such as increased efficiency of ports and low emission of pollutants in ports by utilizing fourth industrial technologies and ICT technologies such as AI, big data, self-driving cars and connected cars. It is also investing in developing fully unmanned terminals to solve the problem of workforce reduction caused by avoidance of 3D industries. However, the introduction of advanced technology is being delayed in domestic ports, which has led to a drop in port efficiency. In addition, port safety accidents have also occurred frequently, seriously affecting port marketing. Thus, the characteristics and types of each container terminal in Korea were analyzed and the factors for introducing autonomous cooperative driving were classified into five section factors and 15 division factors. Hierarchically classified factors will be surveyed on workers working in shipping lines, port construction, container terminals and related ministries.

  • PDF

Purification process and reduction of heavy metals from industrial wastewater via synthesized nanoparticle for water supply in swimming/water sport

  • Leiming Fu;Junlong Li;Jianming Yang;Yutao Liu;Chunxia He;Yifei Chen
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.441-449
    • /
    • 2023
  • Heavy metals, widely present in the environment, have become significant pollutants due to their excessive use in industries and technology. Their non-degradable nature poses a persistent environmental problem, leading to potential acute or chronic poisoning from prolonged exposure. Recent research has focused on separating heavy metals, particularly from industrial and mining sources. Industries such as metal plating, mining operations, tanning, wood and chipboard production, industrial paint and textile manufacturing, as well as oil refining, are major contributors of heavy metals in water sources. Therefore, removing heavy metals from water is crucial, especially for safe water supply in swimming and water sports. Iron oxide nanoparticles have proven to be highly effective adsorbents for water contaminants, and efforts have been made to enhance their efficiency and absorption capabilities through surface modifications. Nanoparticles synthesized using plant extracts can effectively bind with heavy metal ions by modifying the nanoparticle surface with plant components, thereby increasing the efficiency of heavy metal removal. This study focuses on removing lead from industrial wastewater using environmentally friendly, cost-effective iron nanoparticles synthesized with Genovese basil extract. The synthesis of nanoparticles is confirmed through analysis using Transmission Electron Microscope (TEM) and X-ray diffraction, validating their spherical shape and nanometer-scale dimensions. The method used in this study has a low detection limit of 0.031 ppm for measuring lead concentration, making it suitable for ensuring water safety in swimming and water sports.

Improvement of Sediment Trapping Efficiency Module in SWAT using VFSMOD-W Model (VFSMOD-W 모형을 이용한 SWAT 모형의 초생대 유사 저감 효율 모듈 개선)

  • Park, Younshik;Kim, Jonggun;Kim, Namwon;Park, Joonho;Jang, Won-Seok;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.4
    • /
    • pp.473-479
    • /
    • 2008
  • Environment problem has been arising in many countries. Especially, soil erosion has been deemed as one of the biggest issues because sediment causes muddy water and pollutants, such as agricultural chemicals, flow in the stream with this sediment. Many studies, regarding soil loss and non-point source pollution from watershed, has been performed while serious problem has been known. Soil loss occurred in most agricultural area by rainfall and runoff. It makes hydraulic structure unstable, causes environmental economical problems because muddy water destroys ecosystem and causes intake water deterioration. As revealing serious effects of muddy water by sediment, many researches have been doing with various methods. Hydraulic structures establishments such as soil erosion control dams and grit chamber are common. Vegetative filter strip is investigated in this study because vegetative filter strip is designed for reducing sediment from upland areas of the watershed, and it has many functions, not only sediment reduction but also runoff water quality improvement and wildlife habitat. With these positive functions of the vegetative filter strip, the study about vegetative filter strip has been increasing for reducing sediment because it is more effective than hydraulic structures from an environmental perspective. But the sediment trapping efficiency by vegetative filter strip, needs to be investigated and designed first. Therefore the model, VFSMOD-W, was used in this study as it can estimate sediment trapping efficiency of vegetative filter strip under various field, vegetation, weather condition. Sensitive factors to sediment trapping efficiency are studied with VFSMOD-W, and sediment trapping efficiency equation has been derived using two most sensitive factors. It is thought that the equation suggested in this study can be used in Soil and Water Assessment Tool (SWAT), to overcome the limit of SWAT filter strip module, which is based solely on filter strip width.

Reduction Effect of Air Cleaner on Particulate Matters and Biological Agents in a Swine Facility (공기정화기 적용에 따른 돈사 작업장내 입자상 물질 및 생물학상 물질 저감 효과에 관한 연구)

  • Kim, Ki Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • Objectives: This on-site study was performed to evaluate the reduction efficiency of an air cleaner on particulate matters and biological agents in a swine facility. Materials and Methods: Particulate matter was measured using a real-time monitoring recorder and biological agents were sampled with a one-stage impactor and then analyzed based on the microbial culture method. An experimental process for the reduction effect on airborne pollutants through air cleaner operation consisted of three conditions: no treatment, wet scrapper by water spray and wet scrapper by disinfectant spray. Results: Geometric mean levels of particulate matter(TSP, $PM_{10}$, $PM_{2.5}$ and $PM_1$) were presented at $1,608{\mu}g/m^3$, $1,373.8{\mu}g/m^3$, $401.8{\mu}g/m^3$ and $144.5{\mu}g/m^3$ for no treatment; $1,503{\mu}g/m^3$, $1,017{\mu}g/m^3$, $159.4{\mu}g/m^3$ and $69.8{\mu}g/m^3$ for wet scrapper by water spray; and $1,222.17{\mu}g/m^3$, $477.17{\mu}g/m^3$, $33.2{\mu}g/m^3$ and $11.1{\mu}g/m^3$ for wet scrapper by disinfectant spray, respectively. In the case of biological agents, the geometric averaged concentrations of total airborne bacteria and fungi were as follows: $45,371cfu/m^3$ and $13,474cfu/m^3$ for no treatment, $43,286cfu/m^3$ and $8,610cfu/m^3$ for wet scrapper by water spray, and $2,440cfu/m^3$ and 1,867 cfu/ for wet scrapper by disinfectant spray, respectively. Regardless of particulate matter and biological agent, the highest concentrations were found for no treatment, while the lowest concentrations were found with wet scrapper by disinfectant spray. Conclusions: Based on the results obtained from this on-site evaluation, there was a significant reduction effect on particulate matter and biological agents through the application of an air cleaner in this study.

Development of an Solid Separation System for Pig Slurry (돈 슬러리용 고형물 분리시스템 개발)

  • 김민균;김태일;최동윤;백광수;박진기;양창범;탁태영
    • Journal of Animal Environmental Science
    • /
    • v.8 no.1
    • /
    • pp.9-16
    • /
    • 2002
  • This study was conducted to develope the new solid separating system which can be efficiently and economically removed the solid parts in high pollutants concentration of pig slurry. The pollutants concentration, BOD$_{5}$ , COD and SS of the slurry used in this study was 15,990($\pm$2,389)mg/l, 20,004($\pm$5,512)mg/l and 26,486($\pm$5,935)mg/l, respectively. After removal of solid part in slurry, the pollutants concentration, BOD$_{5}$, COD and SS was change into 5,617($\pm$690)mg/l, 5,553($\pm$633)mg/land 1,456($\pm$341)mg/l, respectively in the Fixed biological membrane tank. The reduction of the pollutants concentration of suspend liquid through membrane will be allowed to greatly improve the water purification by an Activated sludge method. This separating system consisted of a temporary storage, a circulating tank and a Fixed Biological membrane tank. A temporary storage which has a draining system of screw type and an aeration device played a tremendous role in draining the solid by filled an aeration of 0.3 l/min. A Fixed Biological membrane tank of which a styrofoam filled in a 2/3 volume as a Biological media was fixed by a stainless steel net (pore size : 0.5mm) to separate the liquid layer of influx in them. The separating system efficiency factors were the speed of screw motor, cycle number of slurries in a circulating tank and moisture contents of solid effluent through the screw path. Although the pollutants concentration was very variable in temporary storage, the final concentration of $BOD_5$ and SS, except COD of the suspended liquid in a Fixed biological membrane were not different regardless of cycle number of a circulating tank. Moisture contents of effluent from temporary storage was 73% under the speed 1 ppm of screw motor and 62% under the 1/4rpm of it.

  • PDF