DOI QR코드

DOI QR Code

Photocatalytic degradation of textile dye CI Basic Yellow 28 wastewater by Degussa P25 based TiO2

  • Konecoglu, Gulhan (Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus) ;
  • Safak, Toygun (Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus) ;
  • Kalpakli, Yasemen (Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus) ;
  • Akgun, Mesut (Yildiz Technical University, Chemical Engineering Department, Davutpasa Campus)
  • Received : 2014.01.28
  • Accepted : 2015.02.25
  • Published : 2015.03.25

Abstract

Wastewaters of textile industry cause high volume colour and harmful substance pollutions. Photocatalytic degradation is a method which gives opportunity of reduction of organic pollutants such as dye containing wastewaters. In this study, photocatalytic degradation of C.I. Basic Yellow 28 (BY28) as a model dye contaminant was carried out using Degussa P25 in a photocatalytic reactor. The experiments were followed out at three different azo dye concentrations in a reactor equipped UV-A lamp (365 nm) as a light source. Azo dye removal efficiencies were examined with total organic carbon and UV-vis measurements. As a result of experiments, maximum degradation efficiency was obtained as 100% at BY28 concentration of $50mgL^{-1}$ for the reaction time of 2.5 h. The photodegradation of BY28 was described by a pseudo-first-order kinetic model modified with the langmuir-Hinshelwood mechanism. The adsorption equilibrium constant and the rate constant of the surface reaction were calculated as $K_{dye}=6.689{\cdot}10^{-2}L\;mg^{-1}$ and $k_c=0.599mg\;L^{-1}min^{-1}$, respectively.

Keywords

References

  1. Bali, U., Catalkaya, E. and Sengul, F. (2004), "Photodegradation of Reactive black 5, Direct red 28 and Direct yellow 12 using UV, UV/$H_2O_2$ and UV/$H_2O_2$/$Fe_2{+}$: A comparative study", J. Hazard. Mater., 114(1-3), 159-166. https://doi.org/10.1016/j.jhazmat.2004.08.013
  2. Benabbou, A.K., Derriche, Z., Felix, C., Lejeune, P. and Guillard, C. (2007), "Photocatalytic inactivation of Escherischia coli: Effect of concentration of $TiO_2$ and microorganism, nature, and intensity of UV irradiation", App. Catal. B: Environ., 76(3-4), 257-263. https://doi.org/10.1016/j.apcatb.2007.05.026
  3. Can, H.K., Kirci, B., Kavlak, S. and Guner, A. (2003), "Removal of some textile dyes from aqueous solutions by poly(N-vinyl-2-pyrrolidone) and poly(N-vinyl-2-pyrrolidone)/$K_2S_2O_8$ hydrogels", Rad. Phy. Chem., 68(5), 811-818. https://doi.org/10.1016/S0969-806X(03)00348-7
  4. Ciardelli, G. and Ranieri, N. (2001), "The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation", Water Res., 35(2), 567-572. https://doi.org/10.1016/S0043-1354(00)00286-4
  5. Djokic, V., Vujovic, J., Marinkovic, A., Petrovic, R., Janackovic, D., Onjia, A. and Mijin, D. (2012), "A study of the photocatalytic degradation of the textile dye CI Basic Yellow 28 in water using a P160 $TiO_2$-based catalyst", J. Serbian Chem. Soc., 77(12), 1747-1757. https://doi.org/10.2298/JSC121015130D
  6. Dogruel, S., Dulekgurgen, E. and Orhon, D. (2006), "Effect of ozonation on chemical oxygen demand fractionation and color profile of textile wastewaters", J. Chem. Tech. Biotech., 81(3), 426-432. https://doi.org/10.1002/jctb.1422
  7. Donlagic, J. and Levec, J. (1997), "Oxidation of an azo dye in subcritical aqueous solutions", Ind. Eng. Chem. Res., 36(9), 3480-3486. https://doi.org/10.1021/ie970034o
  8. Essawy, A.A., Ali, A.E.H. and Abdel-Mottaleb, M.S.A. (2008), "Application of novel copolymer-$TiO_2$ membranes for some textile dyes adsorptive removal from aqueous solution and photocatalytic decolorization", J. Hazard. Mater., 157(2-3), 547-552. https://doi.org/10.1016/j.jhazmat.2008.01.072
  9. Ghoreishi, S.M. and Haghighi, R. (2003), "Chemical catalytic reaction and biological oxidation for treatment of nonbiodegradable textile effluent", Chem. Eng. J., 95(1-3), 163-169. https://doi.org/10.1016/S1385-8947(03)00100-1
  10. Gozmen, B., Turabik, M. and Hesenov, A. (2009), "Photocatalytic degradation of Basic Red 46 and Basic Yellow 28 in single and binary mixture by UV/$TiO_2$/periodate system", J. Hazard. Mater., 164(2-3), 1487-1495. https://doi.org/10.1016/j.jhazmat.2008.09.075
  11. Gumy, D., Giraldo, S.A., Rengifo, J. and Pulgarin, C. (2008), "Effect of suspended $TiO_2$ physicochemical characteristics on benzene derivatives photocatalytic degradation", App. Catal. B: Environ., 78(1-2), 19-29. https://doi.org/10.1016/j.apcatb.2007.08.007
  12. Gupta, V.K., Mittal, A., Krishnan, L. and Gajbe, V. (2004), "Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash", Sep. Pur. Tech., 40(1), 87-96. https://doi.org/10.1016/j.seppur.2004.01.008
  13. Gupta, V.K., Mittal, A., Jain, R., Mathur, M. and Sikarwar, S. (2006), "Adsorption of Safranin-T from wastewater using waste materials e activated carbon and activated rice husks", J. Coll. Int. Sci., 303(1), 80-86. https://doi.org/10.1016/j.jcis.2006.07.036
  14. Gupta, V.K., Jain, R. and Varshney, S. (2007), "Removal of reactofix golden yellow 3 RFN from aqueous solution using wheat husk an agricultural waste", J. Hazard. Mater., 142(1-2), 443-448. https://doi.org/10.1016/j.jhazmat.2006.08.048
  15. Knapp, J.S., Newby, P.S. and Reece, L.P. (1995), "Decolorization of dyes by woodrotting basidiomycete fungi", Enzym. Microbial. Tech., 17(7), 664-668. https://doi.org/10.1016/0141-0229(94)00112-5
  16. Konstantinou, I.K. and Albanis, T.A. (2004), "$TiO_2$-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations", App. Catal. B: Environ., 49(1), 1-14. https://doi.org/10.1016/j.apcatb.2003.11.010
  17. Kumar, K.V., Ramamurthi, V. and Sivanesan, S. (2006), "Biosorption of malachite green, a cationic dye onto Pithophora sp., a fresh water algae", Dyes Pigments, 69(1-2), 102-107. https://doi.org/10.1016/j.dyepig.2005.02.005
  18. Kusvuran, E., Gulnaz, O., Irmak, S., Atanur, O.M., Yavuz, H.I. and Erbatur, O. (2004), "Comparison of several advanced oxidation processes for the decolorization of Reactive Red 120 azo dye in aqueous solution", J. Hazard. Mater., 109(1-3), 85-93. https://doi.org/10.1016/j.jhazmat.2004.03.009
  19. Li, J., Zhou, S.L., Hong, G.B. and Chang, C.T. (2013), "Hydrothermal preparation of P25-graphene composite with enhanced adsorption and photocatalytic degradation of dyes", Chem. Eng. J., 219, 486-491. https://doi.org/10.1016/j.cej.2013.01.031
  20. Marungrueng, K. and Pavasant, P. (2006), "Removal of basic dye (Astrazon Blue FGRL) using macro alga Caulerpa lentillifera", J. Environ. Manag., 78(3), 268-274. https://doi.org/10.1016/j.jenvman.2005.04.022
  21. Mendez, M.A., Tovar, G.R., Davila, M.M., Ornelas, O. and Elizalde, M.P. (2008), "Degradation of Reactive Black 5 and Basic Yellow 28 on metallic-polymer composites", Portug. Electrochimica Acta, 26, 89-100.
  22. Morais, L.C., Freitas, O.M., Goncalves, E.P., Vasconcelos, L.T. and Gonzalez Beca, C.G. (1999), "Reactive dyes removal from wastewaters by adsorption on Eucalyptus bark: variables that define the process", Water Res., 33(4), 979-988. https://doi.org/10.1016/S0043-1354(98)00294-2
  23. Nigam, P., Robinson, T., Mcmullan, G. and Marchant, R. (2001), "Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative", Bioresour. Techn., 77(3), 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8
  24. O'Neill, C., Hawkes, F., Hawkes, D., Lourenco, N., Pinheiro, H. and Delee, W. (1999), "Colour in textile effluents-sources, measurement, discharge consents and simulation: A review", J. Chem. Tech. Biotech., 74(11), 1009-1018. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1009::AID-JCTB153>3.0.CO;2-N
  25. Panniello, A., Curri, M.L., Diso, D., Licciulli, A., Locaputo, V., Agostiano, A., Comparelli, R. and Mascolo, G. (2012), "Nanocrystalline TiO2 based films onto fibers for photocatalytic degradation of organic dye in aqueous solution", App. Catal. B: Environ., 121-122, 190-197. https://doi.org/10.1016/j.apcatb.2012.03.019
  26. Pearce, C.I., Lloyd, J.R. and Guthriea, J.T. (2003), "The removal of colour from textile wastewater using whole bacterial cells: a review", Dyes Pigments, 58(3), 179-196. https://doi.org/10.1016/S0143-7208(03)00064-0
  27. Peternel, I.T., Koprivanac, N., Bozic, A.M.L. and Kusic, H.M. (2007), "Comparative study of UV/$TiO_2$, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution", J. Hazard. Mater., 148(1-2), 477-484. https://doi.org/10.1016/j.jhazmat.2007.02.072
  28. Pino, E. and Encinas, M.V. (2012), "Photocatalytic degradation of chlorophenols on $TiO_2$-325mesh and $TiO_2$-P25. An extended kinetic study of photodegradation under competitive conditions", J. Photochem. Photobio. A: Chem., 242, 20-27. https://doi.org/10.1016/j.jphotochem.2012.05.019
  29. Rauf, M.A., Meetani, M.A. and Hisaindee, S. (2011), "An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals", Desalination, 276(1-3), 13-27. https://doi.org/10.1016/j.desal.2011.03.071
  30. Sahel, K., Perol, N., Chermette, H., Bordes, C., Derriche, Z. and Guillard, C. (2007), "Photocatalytic decolorization of Remazol Black 5 (RB5) and Procion Red MX-5B: Isotherm of adsorption, kinetic of decolorization and mineralization", App. Catal. B: Environ., 77(1-2), 100-109. https://doi.org/10.1016/j.apcatb.2007.06.016
  31. Silva, C.G., Wang, W. and Faia, J.L. (2006), "Photocatalytic and photochemical degradation of mono-, diand tri-azo dyes in aqueous solution under UV irradiation", J. Photochem. Photobio. A: Chem., 181(2-3), 314-324. https://doi.org/10.1016/j.jphotochem.2005.12.013
  32. Silva, A.M.T., Nouli, E., Xekoukoulotakis, N.P. and Mantzavinos, D. (2007), "Effect of key operating parameters on phenols degradation during $H_2O_2$-assisted $TiO_2$ photocatalytic treatment of simulated and actual olive mill wastewaters", App. Catal. B: Environ., 73(1-2), 11-22. https://doi.org/10.1016/j.apcatb.2006.12.007
  33. Sun Q. and Yang, L. (2003), "The adsorption of basic dyes from aqueous solution on modified peat-resin particle", Water Res., 37(7), 1535-1544. https://doi.org/10.1016/S0043-1354(02)00520-1
  34. Szpyrkowicz, L., Juzzolino, C. and Kaul, S.N. (2001), "A comparative study on oxidation of disperse dyes by electrochemical process, ozone, hypochloride and fenton reagent", Water Res., 35(9), 2129-2136. https://doi.org/10.1016/S0043-1354(00)00487-5
  35. Tan, X., Kyaw, N.N., Teo, W.K. and Li, K. (2006), "Decolorization of dye-containing aqueous solutions by the polyelectrolyteenhanced ultrafiltration (PEUF) process using a hollow fiber membrane module", Sep. Pur. Tech., 52(1), 110-116. https://doi.org/10.1016/j.seppur.2006.03.028
  36. Xiong, Y., Strunk, P.J., Xia, H., Zhu, X. and Karlsson, H.T. (2001), "Treatment of dye wastewater containing acid orange II using a cell with three-phase three-dimensional electrode", Water Res., 35(17), 4226-4230. https://doi.org/10.1016/S0043-1354(01)00147-6
  37. Vandevivere, P.C., Bianchi, R. and Verstraete, W. (1998), "Treatment and reuse of wastewater from the textile wet-processing industry: Review of emerging technologies", J. Chem. Tech. Biotech., 72(4), 289-302. https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-#
  38. Velmurugan, R., Krishnakumar, B., Kumar, R. and Swaminathan, M. (2012), "Solar active nano-$TiO_2$ for mineralization of Reactive Red 120 and Trypan Blue", Arabian J. Chem., 5(4), 447-452. https://doi.org/10.1016/j.arabjc.2010.12.023
  39. Vlyssides, A.G., Papaioannou, D., Loizidoy, M., Karlis, P.K. and Zorpas, A.A. (2000), "Testing an electrochemical method for treatment of textile dye wastewater", Waste Manag., 20(7), 569-574. https://doi.org/10.1016/S0956-053X(00)00028-3
  40. Zhang, J.Y., Boyd, I.W., O'Sullivan, B.J., Hurley, P.K., Kelly, P.V. and Senateur, J.P. (2002), "Nanocrystalline $TiO_2$ films studies by optical, XRD and FTIR spectroscopy", J. Non-Cryst. Solids, 303(1), 134-138. https://doi.org/10.1016/S0022-3093(02)00973-0
  41. Zhou, M., Yu, J., Liu, S., Zhai, P. and Huang, B. (2009), "Spray-hydrolytic synthesis of highly photoactive mesoporous anatase nanospheres for the photocatalytic degradation of toluene in air", App. Catal. B: Environ., 89(1-2), 160-166. https://doi.org/10.1016/j.apcatb.2008.11.036
  42. Zissi, U. and Lyberatos, G. (1995), "Azo-dye biodegradation under anoxic conditions", Water Sci. Tech., 34(5-6), 495-500. https://doi.org/10.1016/0273-1223(96)00684-1

Cited by

  1. Semiconductor coupled solar photo-Fenton's treatment of dyes and textile effluent vol.5, pp.1, 2016, https://doi.org/10.12989/aer.2016.5.1.061
  2. Solar light-driven photocatalysis using mixed-phase bismuth ferrite (BiFeO3/Bi25FeO40) nanoparticles for remediation of dye-contaminated water: kinetics and comparison with artificial UV and visible light-mediated photocatalysis vol.25, pp.14, 2018, https://doi.org/10.1007/s11356-018-1291-0
  3. Removal of Starch Glue from Wastewater by Coupling Coagulation and Electroflotation Processes vol.53, pp.2, 2015, https://doi.org/10.1134/s0040579519020064
  4. Multitarget Evaluation of the Photocatalytic Activity of P25-SiO2 Prepared by Atomic Layer Deposition vol.10, pp.4, 2015, https://doi.org/10.3390/catal10040450
  5. Photocatalytic Degradation of Methylene Blue Dye Using TiO2 and Fe3O4/SiO2/TiO2 as Photocatalysts vol.877, pp.None, 2015, https://doi.org/10.1088/1757-899x/877/1/012008
  6. Development of the ultra/nano filtration system for textile industry wastewater treatment vol.11, pp.5, 2015, https://doi.org/10.12989/mwt.2020.11.5.333