Feasibility Study of Activation of Persulfate by Fe(II) for Phenol Contaminated Sediment |
Jo, Jae Hyun
(Department of Civil and Environmental Engineering, Pusan National University)
Yoon, Seong-Eun (Department of Civil and Environmental Engineering, Pusan National University) Kim, Jae-Moon (Department of Civil and Environmental Engineering, Pusan National University) Hwang, Inseong (Department of Civil and Environmental Engineering, Pusan National University) |
1 | Chen, J., Gu, B., Royer, R.A., and Burgos, W.D., 2003, The roles of natural organic matter in chemical and microbial reduction of ferric iron, The Sci. Total Env., 307(1-3), 167-178. DOI |
2 | Dong, H., Qiang, Z., Hu, J., and Sans, C., 2017, Accelerated degradation of iopamidol in iron activated persulfate systems: Roles of complexing agents, Chem. Eng. J, 316, 288-295. DOI |
3 | Fang, G., Chen, X., Wu, W., Liu, C., Dionysiou, D.D., Fan, T., Yujun W., Changyin Z., and Zhou, D., 2018, Mechanisms of Interaction between Persulfate and Soil Constituents: Activation, Free Radical Formation, Conversion, and Identification, Environ. Sci. Tecnol., 52(24), 14352-14361. DOI |
4 | House, D.A., 1962, Kinetics and mechanism of oxidations by peroxydisulfate, Chemical reviews, 62(3), 185-203. DOI |
5 | Himes, Frank L., and Stanley A. Barber., 1957, Chelating ability of soil organic matter, Soil Sci Soc Am J, 21(4), 368-373. DOI |
6 | Ingersoll, C.G., Brunson, E.L., Dwyer, F.J., Ankley, G.T., Benoit, D.A., Norberg‐King, T.J., Allen, G.A., Hoke, R.A., Landrum, P.F., and Winger, P.V., 1995, Toxicity and bioaccumulation of sediment-associated contaminants using freshwater invertebrates: A review of methods and application, Environ. Toxi. Chem., 14(11), 1885-1894. DOI |
7 | Kim, B.G., Jung, K.W., and Kim, H.J., 2009, A Study on the characteristics of sediment in suyeong River in: Division IWA., Busan Institute of Health and Environment, Annual Report, 154-167. |
8 | Kim, C., Ahn, J.Y., Kim, T.Y., Shin, W.S., and Hwang, I., 2018, Activation of persulfate by nanosized zero-valent iron (NZVI): mechanisms and transformation products of NZVI, Environ. Sci. Technol., 52(6), 3625-3633. DOI |
9 | Han, D., Wan, J., Ma, Y., Wang, Y., Li, Y., Li, D., and Guan, Z., 2015, New insights into the role of organic chelating agents in Fe (II) activated persulfate processes., Chem. Eng. J., 269, 425-433. DOI |
10 | Kim, G.-H. and Kim, K.-H., 2000, Acid/Base Buffer Capacity of Clays, Journal of the Korean Geotechnical Society, 16(6), 97-103. |
11 | Kaiser, K. and Guggenberge, G., 2003, Mineral surfaces and soil organic matter, Europen J. Soil. Sci., 54(2), 219-236. DOI |
12 | Karlsson, T., Persson, P., and Skyllberg, U., 2006., Complexation of Copper(II) in Organic Soils and in Dissolved Organic Matter - EXAFS evidence for chelate ring structures, Environ. Sci. Technol, 40(8), 2623-2628. DOI |
13 | Rastogi, A., Al-Abed, S. R., and Dionysiou, D.D., 2009, Effect of inorganic, synthetic and naturally occurring chelating agents on Fe (II) mediated advanced oxidation of chlorophenols, Water Res., 43(3), 684-694. DOI |
14 | Liu, Z., Guo, W., Han, X., Li, X., Zhang, K., and Qiao, Z., 2016, In situ remediation of ortho-nitrochlorobenzene in soil by dual oxidants (hydrogen peroxide/persulfate), Springer, 23(19), 19707-19712. |
15 | Ministry of Environment, 2006, Final report on the development of comprehensive water environment evaluation research (III). |
16 | Piasecki, W., Szymanek, K., and Charmas, R., 2019, Fe2+ adsorption on iron oxide: the importance of the redox potential of the adsorption system., Springer, 25(3), 613-619. |
17 | Siegrist, R.L., Crimi, M., and Simpkin, T.J. (Eds)., 2011, In Situ Chemical Oxidation for Groundwater Remediation. Chapter 4: fundamentals Of ISCO using persulfate, Vol. 3, Springer. |
18 | Tan, C., Gao, N., Chu, W., Li, C., and Templeton, M.R., 2012, Degradation of diuron by persulfate activated with ferrous ion, Sep. Purif. Technol, 95, 44-48. DOI |
19 | Wang, Z., Qiu, W., Pang, S., and Jiang, J., 2019, Effect of chelators on the production and nature of the reactive intermediates formed in Fe(II) activated peroxydisulfate and hydrogen peroxide processes., Water Res., 164, 114957. DOI |
20 | Zhou, L., Zheng, W., Ji, Y., Zhang, J., Zeng, C., Zhang, Y., Wang, X., and Yang, X., 2013, Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system, J. Hazard. Mater., 263, 422-430. DOI |
21 | Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004, Persulfate oxidantion for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple, Chemosphere, 55, 1213-1223. DOI |
22 | Korea institute of construction technology, 2003. Distribution survey of sediments and development technology for Enviromental dredging & reuse of dredged material in reservoir and stream. |
23 | Liang, C., Bruell, C.J., Marley, M.C., and Sperry, K.L., 2004, Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion, Chemosphere, 55(9), 1225-1233. DOI |
24 | Liang, C., Huang, C.F., and Chen, Y.J., 2008, Potential for activated persulfate degradation of BTEX contamination., Water Res., 42(15), 4091-4100. DOI |
25 | Liu, H., Bruton, T.A., Li, W., Buren, J.V., Prasse, C., Doyle, F. M., and Sedlak, D.L., (2016), Oxidation of benzene by persulfate in the presence of Fe (III)-and Mn (IV)-containing oxides: stoichiometric efficiency and transformation products, Environ. Sci. Technol. 50(2), 890-898. DOI |
26 | Li, X., Wu, B., Zhang, Q., Xu, D., Liu, Y., Ma, F., Gu, Q., and Li, F, 2019., Mechanisms on the impacts of humic acids on persulfate/Fe2+-based groundwater remdiation, Chem. Eng. J, 378, 122142. DOI |