• Title/Summary/Keyword: reduce patient dose

Search Result 286, Processing Time 0.026 seconds

Dose comparison according to Smooth Thickness application of Range compensator during proton therapy for brain tumor patient (뇌종양 환자의 양성자 치료 시 Range Compensator의 Smooth Thickness 적용에 따른 선량비교)

  • Kim, Tae Woan;Kim, Dae Woong;Kim, Jae Weon;Jeong, Kyeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • Purpose : Range Compensator used for proton therapy compensates the proton beam dose which delivers to the normal tissues according to the Target's Distal Margin dose. We are going to check the improvement of dose on the target part by comparing the dose of PTV and OAR according to applying in different method of Smooth Thickness of Range Compensator which is used in brain tumor therapy. Materials and Methods : For 10 brain tumor patients taking proton therapy in National Cancer Center, Apply Smooth Thickness applied in Range Compensator in order from one to five by using Compensator Editor of Eclipse Proton Planning System(Version 10.0, Varian, USA). The therapy plan algorithm used Proton Convolution Superposition(version 8.1.20 or 10.0.28), and we compared Dmax, Dmin, Homogeneity Index, Conformity Index and OAR dose around tumor by applying Smooth Thickness in phase. Results : When Smooth Thickness was applied from one to five, the Dmax of PTV was decreased max 4.3%, minimum at 0.8 and average of 1.81%. Dmin increased max 1.8%, min 1.8% and average. Difference between max dose and minimum dose decreased at max 5.9% min 1.4% and average 2.6%. Homogeneity Index decreased average of 0.018 and Conformity Index didn't had a meaningful change. OAR dose decreased in Brain Stem at max 1.6%, min 0.1% and average 0.6% and in Optic Chiasm max 1.3%, min 0.3%, and average 0.5%. However, patient C and patient E had an increase each 0.3% and 0.6%. Additionally, in Rt. Optic Nerve, there was a decrease at max 1.5%, min 0.3%, and average 0.8%, however, patient B had 0.1% increase. In Lt. Optic Nerve, there was a decrease at max 1.8%, min 0.3%, and average 0.7%, however, patient H had 0.4 increase. Conclusion : As Smooth Thickness of Range Compensator which is used as the proton treatment for brain tumor patients is applied in stages, the resolution of Compensator increased and as a result the most optimized amount of proton beam dose can be delivered. This is considered to be able to irradiate the equal amount at PTV and reduce the unnecessary dose applied at OAR to reduce the side effects.

  • PDF

Computed tomography-guided 3D printed patient-specific regional anesthesia

  • Jundt, Jonathon S.;Chow, Christopher C.;Couey, Marcus
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.5
    • /
    • pp.325-329
    • /
    • 2020
  • Classic anesthetic techniques for the inferior alveolar nerve, lingual nerve, and long buccal nerve blockade are achieved by estimating the intended location for anesthetic deposition based on palpation, inspection, and subsequent correlation for oral anatomical structures. The present article utilizes computed tomography (CT) data to 3D print a guide for repeatable and accurate deposition of a local anesthetic at the ideal location. This technical report aims to anatomically define the ideal location for local anesthetic deposition. This process has the potential to reduce patient discomfort, risk of nerve damage, and failed mandibular anesthesia, as well as to reduce the total anesthetic dose. Lastly, as robotic-based interventions improve, this provides the initial framework for robot-guided regional anesthesia administration in the oral cavity.

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Radiation Quality Analysis of Diagnostic X-ray Equipment (진단용 X선 기기의 선질 분석)

  • Kim, Tae-Gon;Kim, Young-Pyo;Cheon, Min-Woo;Park, Yong-Pil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.771-772
    • /
    • 2010
  • X-ray equipment used to diagnose a patient has a big defect of a patient's exposure to radiation caused in irradiating X-ray to the human body, ICRP restricts the permissible exposure dose of the human body. A number of studies has been proceeded to reduce these exposures. In this study the high voltage generator with inverter system, which is possible to increase the generation efficiency of X-ray and to control the precise output power was produced. Also, to minimize the ripple which is possible to occur in the direct voltage that is applied to X-ray tube the propagation rectification method was applied and the radiation reproducibility and properties were evaluated to use this for the diagnosis of patient.

  • PDF

Dose Comparison between Fast Low Dose C-arm CT and DSA (Fast Low Dose C-arm CT와 DSA의 선량 비교)

  • Kim, Chan-woo;Kim, Jae-Seok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.613-618
    • /
    • 2020
  • The average dose of Fast Low Dose C-arm CT used during hepatic arterial chemoembolization was compared with the average dose of DSA, and the exposure dose was analyzed by analyzing the average dose for each test technique in the total accumulated dose. 50 patients were randomly selected at our clinic and compared with Fast Low Dose C-arm CT, DAP and Air Kerma of DSA, and the accumulation of four test techniques (DSA, Fast Low Dose C-arm CT, Roadmap, Fluoroscopy) The proportion of dose (DAP, Air Kerma) was analyzed. For statistical comparative analysis, the corresponding sample T test and ANOVA test (post hoc test: Tukey) were performed using the statistical program SPSS 20.0. Fast Low Dose C-arm CT showed statistically significantly lower average dose (DAP, Air Kerma) than DSA. Reducing the number of tests for DSA can reduce the patient's exposure to medical radiation.

The Study on Interpretation of the Scatter Degradation Factor using an additional Filter in a Medical Imaging System (의료 영상 시스템에서 부가 필터를 이용한 산란 열화 인자의 해석에 관한 연구)

  • Kang, Sang Sik;Kim, Kyo Tae;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.589-596
    • /
    • 2019
  • X-rays used for diagnosis have a continuous energy distribution. However, photons with low energy not only reduce image contrast, but also contribute to the patient's radiation exposure. Therefore, clinics currently use filters made of aluminum. Such filters are advantageous because they can reduce the exposure of the patient to radiation. However, they may have negative effects on imaging quality, as they lead to increases in the scattered dose. In this study, we investigated the effects of the scattered dose generated by an aluminum filter on medical image quality. We used the relative standard deviation and the scatter degradation factor as evaluation indices, as they can be used to quantitatively express the decrease in the degree of contrast in imaging. We verified that the scattered dose generated by the increase in the thickness of the aluminum filter causes degradation of the quality of medical images.

Research on the Reduction of Exposure Dose of a Patient Having a PET/CT Exam (PET/CT 검사 환자의 피폭선량 경감을 위한 연구)

  • Kim, Bong-Su;Pyo, Sung-Jai;Cho, Yong-Gyi;Shin, Chai-Ho;Cho, Jin-Woo;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.10-16
    • /
    • 2009
  • Purpose: As the number of patients has increased since the installation of a PET/CT, we are now examining about 2500-3000 annually. We have realized that if we properly adjust a pitch under the same condition of a CT during a PET/CT exam, radiation quantity that reaches the patient can change. In order to reduce the exposure dose of a patient, the research examines a method of reducing the exposure dose of a patient by controlling the pitch during a PET/CT exam, viewing whether the adjustment of the pitch influences CT image and PET SUV. Methods: The equipment used is a Biograph Positron Emission Tomography (PET) Scanner (CT type: TRCT-240-130 (WCT-240-130)) of Siemens company. For the evaluation of exposure dose of a patient, we measured radiation quantities using a PTW-DIADOS 11003/1383, which is a CT radiation measurement instrument used by Siemens. We measured and analyzed the space resolutions of CT images caused by the change of pitches using an AAPM Standard Phantom in order to see how the adjustment of pitches influenced the CT images. In addition, in order to obtain SUVs caused by each change of pitches using a PET source made with a solid radioactive cylinder phantom, we confirmed whether the SUVs changed in the PET/CT images by calculating the SUVs of the fusion images caused by the change of pitches after obtaining CT and PET images and finishing the test. Results: 2slice CT scanner showed that radiation quantities largely dropped when pitches ranged from 0.7 to 1.3 and that the reduction of radiation quantities were smaller when pitches ranged from 1.5 to 1.9. That is, we found that the bigger pitch values are the smaller the radiation quantities of a patient are. Moreover, we realized that there is no change of SUVs caused by the increase of pitches and that pitch values do not influence PET SUVs and the quality of CT images. It is judged that using 1.5 as a pitch value contributes to the reduction of exposure dose of a patient as long as there is no problem in the quality of an image. Conclusions: When seeing the result of the research, hospital using a PET/CT should make an effort to reduce the exposure dose of a patient seeking pitch values appropriate for their hospital within the range in which there is no image distortion and PET SUVs are not influenced from pitches. We think that the research can apply to all multi-detectors having a CT scanner and that such a research will be needed for other equipments in the future.

  • PDF

The Reduction ways of Medicine Material Costs of Nuclear Medicine In Vitro (핵의학 체외검사의 진료재료비용 절감 방안)

  • Song, Hun-Kang;Seo, Jung-Mi;Yang, Joon-Ho;Kim, Eun-Jung;Kim, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.2
    • /
    • pp.111-115
    • /
    • 2011
  • Purpose: In vitro uses dose response curve with 6 to 7 standard concentrations in every examination to analyze examination results and this use of dose response curve comprises a large portion of the consumption of medicine material. At this present, some ones of in-hospital examination items have shown mostly low result of distribution in the analyzed features and these examinations have been judged that it would be unnecessary to use the last standard concentration. Hence, this study selects those examination items showing low result of distribution and reviews the cases contributed to less consumption of medicine material and revenue growth of hospital by reduction of medicine material used in the place of the last standard concentration. Materials and Methods: The study was made targeting 11 examination items out of total 43 items of the in-hospital examination and since these examination items were mostly low in the features as the examination results of patients or the examination results were distributed to show lower concentration than the previous last standard concentration, it carried out the examination without using the last standard concentration, which could generate the effect to reduce medicine material (examination tube) used in the last standard concentration as many as the number of examination carried out. For this, it examined the number of medicine material reduction by month during the period from July, 2009 to February, 2011 and estimated the reduction amount of medicine material calculated the number of reduction by the unit cost of medicine material as well as the profit generated by the reduced medicine material to use for the medicine material of patient examination. Results: The total number of medicine material reduced during the period from July, 2009 to February, 2011 was 3,131 pieces, which had the effect to reduce the medicine material equivalent to about 31 kits of reagent. To calculate this by the unit cost of the medicine material, it analyzed to reduce about 6.4 million won of medicine material cost. Also the reduced medicine materials were used for medicine materials of patient examination and this was analyzed to generate about 13.75 million won of profit based on the ABC cost accounting. Conclusion: It showed no problem in the analysis of examination result even without using the last standard concentration regarding those examination items with low distribution of the patient examination result. For these examination items, it was able to reduce medicine material used for the last standard as many as the number of examination carried out. Also, the adjustment of concentration range was found to have no problem in the reliability of examination result. Therefore, this case will be applicable in those occasions of when the analysis of patient examination result is mostly distributed at the lower level or when an examination with the distribution of patient results in the range of lower concentration than the previous last standard concentration is carried out and this is considered to increase the efficiency in the use of medicine material in vitro as well as contribute to the profit of hospitals.

  • PDF

A Cosideration on Physical Aspects in Teleradiotherapy Chart QA (원격방사선치료 기록부의 QA 에서 물리적 측면의 고찰)

  • 강위생;허순녕
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.95-101
    • /
    • 1999
  • The aims of this report are to classify the incorrect data of patients and the errors of dose and dose distribution observed in QA activities on teleradiotherapy chart, and to analyze their frequency. In our department, radiation physicists check several sheets of patient chart to reduce numeric errors before starting radiation therapy and at least once a week, which include history, port diagram, MU calculation or treatment planning summary and daily treatment sheet. The observed errors are classified as followings. 1) Identity of patient, 2) Omitted or unrecorded history sheet even though not including the item related to dose, 3) Omission of port diagram, or omitted or erroneous data, 4) Erroneous calculation of MU and point dose, and important causes, 5) Loss of summary sheet of treatment planning, and erroneous data of patient in the sheet, 6) Erroneous record of radiation therapy, and errors of daily dose, port setup, MU and accumulated dose in the daily treatment sheet, 7) Errors leading inexact dose or dose distribution, errors not administerd even though its possibility, and simply recorded errors, 8) Omission of sign. Number of errors was counted rather than the number of patients. In radiotherapy chart QA from Jun 17, 1996 to Jul 31, 1999, no error of patient identity had been observed. 431 Errors in 399 patient charts had been observed and there were 405 physical errors, 9 cases of omitted or unrecorded history sheet, and 17 unsigned. There were 23 cases (5.7%) of omitted port diagram, 21 cases (5.2%) of omitted data and 73 cases (18.0 %) of erroneous data in port diagram, 13 cases (3.2 %) treated without MU calculation, 68 cases (16.3 %) of erroneous MU, 8 cases (2.0%) of erroneous point dose, 1 case (0.2 %) of omitted treatment planning summary, 11 cases (2.7%) of erroneous input of patient data, 13 cases (3.2%) of uncorrected record of treatment, 20 cases (4.9%) of discordant daily doses in MU calculation sheet and daily treatment sheet, 33 cases (8.1%) of erroneous setup, 52 cases (12.8%) of MU setting error, 61 cases (15.1%) of erroneous accumulated dose. Cases of error leading inexact dose or dose distribution were 239 (59.0 %), cases of error not administered even though its possibility were 142 (35.1 %), and cases of simply recorded error were 24 (5.9 %). The numeric errors observed in radiotherapy chart ranged over various items. Because errors observed can actually contribute to erroneous dose or dose distribution, or have the possibility to lead such errors, thorough QA activity in physical aspects of radiotherapy charts is required.

  • PDF

Image Quality and Radiation Dose of High-Pitch Dual-Source Spiral Cardiothoracic Computed Tomography in Young Children with Congenital Heart Disease: Comparison of Non-Electrocardiography Synchronization and Prospective Electrocardiography Triggering

  • Goo, Hyun Woo
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1031-1041
    • /
    • 2018
  • Objective: To compare image quality and radiation dose of high-pitch dual-source spiral cardiothoracic computed tomography (CT) between non-electrocardiography (ECG)-synchronized and prospectively ECG-triggered data acquisitions in young children with congenital heart disease. Materials and Methods: Eighty-six children (${\leq}3$ years) with congenital heart disease who underwent high-pitch dual-source spiral cardiothoracic CT were included in this retrospective study. They were divided into two groups (n = 43 for each; group 1 with non-ECG-synchronization and group 2 with prospective ECG triggering). Patient-related parameters, radiation dose, and image quality were compared between the two groups. Results: There were no significant differences in patient-related parameters including age, cross-sectional area, body density, and water-equivalent area between the two groups (p > 0.05). Regarding radiation dose parameters, only volume CT dose index values were significantly different between group 1 ($1.13{\pm}0.09mGy$) and group 2 ($1.07{\pm}0.12mGy$, p < 0.02). Among image quality parameters, significantly higher image noise ($3.8{\pm}0.7$ Hounsfield units [HU] vs. $3.3{\pm}0.6HU$, p < 0.001), significantly lower signal-to-noise ratio ($105.0{\pm}28.9$ vs. $134.1{\pm}44.4$, p = 0.001) and contrast-to-noise ratio ($84.5{\pm}27.2$ vs. $110.1{\pm}43.2$, p = 0.002), and significantly less diaphragm motion artifacts ($3.8{\pm}0.5$ vs. $3.7{\pm}0.4$, p < 0.04) were found in group 1 compared with group 2. Image quality grades of cardiac structures, coronary arteries, ascending aorta, pulmonary trunk, lung markings, and chest wall showed no significant difference between groups (p > 0.05). Conclusion: In high-pitch dual-source spiral pediatric cardiothoracic CT, additional ECG triggering does not substantially reduce motion artifacts in young children with congenital heart disease.