• Title/Summary/Keyword: redox electrolyte

Search Result 149, Processing Time 0.023 seconds

The Electrolyte Flow Rate Effect on the Performance of a Vanadium Redox Flow Battery (VRFB) (바나듐레독스흐름전지의 전해질의 유량 변화에 따른 성능 영향성)

  • YECHAN PARK;SUNHOE KIM
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.6
    • /
    • pp.803-807
    • /
    • 2022
  • In this study, the battery performance change according to the change of electrolyte flow rate. With increase of electrolyte flow rate the energy efficiency showed tendency of decrease. The electrochemical impedance spectroscopy results showed the increased resistance.

Numerical Study About Compression Effect of Porous Electrodes on the Performance of Redox Flow Batteries (다공성 전극의 압축률이 레독스흐름전지의 성능에 미치는 영향에 대한 수치해석적 연구)

  • Jeong, Daein;Jung, Seunghun
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • When designing a redox flow battery system, compression of battery stack is required to prevent leakage of electrolyte and to reduce contact resistance between cell components. In addition, stack compression leads to deformation of the porous carbon electrode, which results in lower porosity and smaller cross-sectional area for electrolyte flow. In this paper, we investigate the effects of electrode compression on the cell performance by applying multi-dimensional, transient model of all-vanadium redox flow battery (VRFB). Simulation result reveals that large compression leads to greater pressure drop throughout the electrodes, which requires large pumping power to circulate electrolyte while lowered ohmic resistance results in better power capability of the battery. Also, cell compression results in imbalance between anolyte and catholyte and convective crossover of vanadium ions through the separator due to large pressure difference between negative and positive electrodes. Although it is predicted that the battery power is quickly improved due to the reduced ohmic resistance, the capacity decay of the battery is accelerated in the long term operation when the battery cell is compressed. Therefore, it is important to optimize the battery performance by taking trade-off between power and capacity when designing VRFB system.

Relationship between Concentration and Performance of Supporting Electrolyte of Redox Flow Battery Using Polyoxometalate (Polyoxometalate를 이용한 레독스 흐름전지의 지지 전해질 농도와 성능의 관계)

  • Yong Jin Cho;Byeong Wan Kwon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.175-179
    • /
    • 2023
  • Herein we present a tested aqueous based redox flow battery (RFB) that employs phosphomolybdic acid and ferrocyanide as the negative and positive active species in an aqueous sodium hydroxide solution. The different concentrations of NaOH solution, such as 1.0, 1.2, 1.4, 1.5, and 1.6 M, were prepared for checking the electrochemical properties and stability. The NaOH concentration as a supporting electrolyte in the negative species appears to play an important role in the electrochemical properties of phosphomolybdic acid. Moreover, the optimum value of the concentration is necessary for the best performance. The resistance of the electrolyte decreased with increasing the concentration up to 1.5 M and then increased to 1.6 M. Hence, the decrease in electrolyte resistance appears to greatly influence the energy efficiency, which is improved by increasing the concentration of NaOH. In addition, the 1.5 M NaOH solution appears to be the concentration required for optimum performance.

Catalytic effects of heteroatom-rich carbon-based freestanding paper with high active-surface area for vanadium redox flow batteries

  • Lee, Min Eui;Kwak, Hyo Won;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.28
    • /
    • pp.105-110
    • /
    • 2018
  • Owing to their scalability, flexible operation, and long cycle life, vanadium redox flow batteries (VRFBs) have gained immense attention over the past few years. However, the VRFBs suffer from significant polarization, which decreases their cell efficiency. The activation polarization occurring during vanadium redox reactions greatly affects the overall performance of VRFBs. Therefore, it is imperative to develop electrodes with numerous catalytic sites and a long cycle life. In this study, we synthesized heteroatom-rich carbon-based freestanding papers (H-CFPs) by a facile dispersion and filtration process. The H-CFPs exhibited high specific surface area (${\sim}820m^2g^{-1}$) along with a number of redox-active heteroatoms (such as oxygen and nitrogen) and showed high catalytic activity for vanadium redox reactions. The H-CFP electrodes showed excellent electrochemical performance. They showed low anodic and cathodic peak potential separation (${\Delta}E_p$) values of ~120 mV (positive electrolyte) and ~124 mV (negative electrolyte) in cyclic voltammetry conducted at a scan rate of $5mV\;s^{-1}$. Hence, the H-CFP-based VRFBs showed significantly reduced polarization.

Electrochemical Characteristics of Assembled-Graphite/DSA Electrode for Redox Flow Battery (Redox Flow Battery용 일체화된 흑연/DSA 전극의 전기화학적 특성)

  • Kim, Hyung-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.123-127
    • /
    • 2010
  • An assembled-graphite/DSA(Dimensionally Stable Anode) was prepared using graphite powder to increase durability and energy efficiency of redox flow battery and investigated its electrochemical properties in vanadium-based electrolyte. The cyclic voltammetry (CV) was carried out in the voltage range of -0.7V and 1.6V vs. SCE at 5 mV/sec scan rate to analyze vanadium redox reaction. From the CV results, the assembled-graphite/DSA electrode showed a fast couple reaction and good reversibility in 2M $VOSO_4$ + 2.5 M $H_2SO_4$ electrolyte. Therefore, it has been expected that this electrode increases power density as well as energy density of redox flow battery.

Study on the Vanadium Redox Flow Battery using Cation Exchange Membrane and Ammonium Metavanadate (메타바나듐산암모늄과 양이온교환막을 활용한 바나듐 레독스 흐름전지에 관한 연구)

  • Jung, Bo-Young;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.262-267
    • /
    • 2021
  • The electrochemical performance of all vanadium redox flow battery (VRFB) using an electrolyte prepared from ammonium metavanadate and a cation exchange membrane (Nafion117) was evaluated. The electrochemical performance of VRFB was measured at a current density of 60 mA/cm2. The average current efficiency of VRFB using the electrolyte prepared from ammonium metavanadate was 94.9%, the average voltage efficiency was 82.2%, and the average energy efficiency was 78.0%. In addition, it was confirmed that the efficiencies of VRFB using the electrolyte prepared from ammonium metavanadate had almost the same value as the efficiencies of VRFB using the electrolyte prepared with vanadyl sulfate (VOSO4).

Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries

  • Kim, Hyung-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.571-575
    • /
    • 2011
  • Graphite-based electrodes were prepared using synthetic graphite (MCMB 1028) or natural graphite (NG) powder using a dimensionally stable anode (DSA) as a substrate. Their electrochemical properties were investigated in vanadiumbased electrolytes to determine how to increase the durability and improve the energy efficiency of redox flow batteries. Cyclic voltammetry (CV) was performed in the voltage range of -0.7 V to 1.6 V vs. SCE at various scan rates to analyze the vanadium redox reaction. The graphite-based electrodes showed a fast redox reaction and good reversibility in a highly concentrated acidic electrolyte. The increased electrochemical activity of the NG-based electrode for the $V^{4+}/V^{5+}$ redox reaction can be attributed to the increased surface concentration of functional groups from the addition of conductive material that served as a catalyst. Therefore, it is expected that this electrode can be used to increase the power density and energy density of redox flow batteries.

Mediated Electrochemical Oxidation of High Molecular Weight PEGs by Co(III)/Co(II) and Fe(III)/Fe(II) Redox Systems (Co(III)/Co(II) 및 Fe(III)/Fe(II) 산화환원계에 의한 고분자량 폴리에텔렌글리콜류의 매개전해산화)

  • Park, Seung-Cho;Kim, Ik-Seong
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.206-211
    • /
    • 2005
  • Mediated electrochemical oxidation (MEO) of polyethylene glycols (PEGs) of molecular weight of 1000, 4000 and 20000, was carried out on both platinum (Pt) and titanium-iridium electrodes in 8.0 M nitric acid solution containing 0.5 M Fe(II) and Co(II) ion. The electrochemical parameters such as current densities, kinds of electrode, electrolyte concentration and removal efficiency were investigated in both Fe(III)/Fe(II) and Co(III)/Co(II) redox systems. The PEGs was decomposed into carbon dioxide by MEO in Fe(III)/Fe(II) and Co(III)/Co(II) redox system during 180 min and 210 min at the current density of $0.67A/cm^2$ on the Pt electrode. Removal efficiency of PEGs by MEO was better in Co(III)/Co(II) redox system than Fe(III)/Fe(II) redox system, indicating mediated electrochemical removal efficiency was 100%.

The Effect of Additives on the Performance of Aqueous Organic Redox Flow Battery Using Quinoxaline and Ferrocyanide Redox Couple (수계 유기 레독스 흐름 전지 성능에서의 첨가제 효과)

  • Chu, Cheonho;Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.847-852
    • /
    • 2019
  • In this study, the effect of additives on the performance of aqueous organic redox flow battery (AORFB) using quinoxaline and ferrocyanide as active materials in alkaline supporting electrolyte is investigated. Quinoxaline shows the lowest redox potential (-0.97 V) in KOH supporting electrolyte, while when quinoxaline and ferrocyanide are used as the target active materials, the cell voltage of this redox combination is 1.3 V. When the single cell tests of AORFBs using 0.1 M active materials in 1 M KCl supporting electrolyte and Nafion 117 membrane are implemented, it does not work properly because of the side reaction of quinoxaline. To reduce or prevent the side reaction of quinoxaline, the two types of additives are considered. They are the potassium sulfate as electrophile additive and potassium iodide as nucleophilie additive. Of them, when the single cell tests of AORFBs using potassium iodide as additive dissolved in quinoxaline solution are performed, the capacity loss rate is reduced to $0.21Ah{\cdot}L^{-1}per\;cycle$ and it is better than that of the single cell test of AORFB operated without additive ($0.29Ah{\cdot}L^{-1}per\;cycle$).

Performance Evaluation of Aqueous Redox Flow Battery using Quinone Redox Couple Dissolved in Ammonium Chloride Electrolyte (염화암모늄 전해질에 포함된 퀴논 레독스 활물질 조합을 이용한 수계 레독스 흐름 전지 성능 평가)

  • Lee, Wonmi;Chung, Kun Yong;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.239-243
    • /
    • 2019
  • In this study, anthraquinone-2,7-disulfonic acid (2,7-AQDS) is used as negative active material and Tiron is used as positive active material for aqueous redox flow battery (RFB). In previous results that used the 2,7-AQDS and Tiron, sulfuric acid ($H_2SO_4$) was a supporting electrolyte. However, in this study, ammonium chloride ($NH_4Cl$) is suggested as the electrolyte for the first time. By changing the supporting electrolyte from $H_2SO_4$ to $NH_4Cl$, the cell voltage of RFB is improved from 0.76 V to 1.01 V. To investigate the effect of $NH_4Cl$ supporting electrolyte of the performance of RFB, the full-cell tests of RFB using 2,7-AQDS and Tiron that are dissolved in $NH_4Cl$ supporting electrolyte are carried out, while cut-off voltage range is a main parameter to determine their performance. When the cut-off voltage range is 0.2~1.6 V, the hydrogen evolution occurs during charging step. To address the side reaction effect, the cut-off voltage range is changed to 0.2~1.2 V. When the revised cut-off voltage range is used and the current density of $40mA/cm^2$ is applied, hydrogen evolution is not observed and the optimal RFB shows the charge efficiency of 99% and discharge capacity of 3.3 Ah/L at 10cycle.