DOI QR코드

DOI QR Code

Electrochemical Characteristics of Assembled-Graphite/DSA Electrode for Redox Flow Battery

Redox Flow Battery용 일체화된 흑연/DSA 전극의 전기화학적 특성

  • Kim, Hyung-Sun (Advanced Battery Center, Korea Institute of Science & Technology)
  • 김형선 (한국과학기술연구원 이차전지센터)
  • Received : 2010.03.30
  • Accepted : 2010.04.05
  • Published : 2010.05.31

Abstract

An assembled-graphite/DSA(Dimensionally Stable Anode) was prepared using graphite powder to increase durability and energy efficiency of redox flow battery and investigated its electrochemical properties in vanadium-based electrolyte. The cyclic voltammetry (CV) was carried out in the voltage range of -0.7V and 1.6V vs. SCE at 5 mV/sec scan rate to analyze vanadium redox reaction. From the CV results, the assembled-graphite/DSA electrode showed a fast couple reaction and good reversibility in 2M $VOSO_4$ + 2.5 M $H_2SO_4$ electrolyte. Therefore, it has been expected that this electrode increases power density as well as energy density of redox flow battery.

Redox Flow Battery용 고내구성 및 고효율 전극의 제조를 위해 DSA(Dimensionally Stable Anode)를 집전체 및 전극으로 사용하고 흑연 입자를 이용한 전극을 제조하여 DSA와 압연하는 방법으로 일체화 된 흑연/DSA 전극의 전기화학적 특성을 조사하였다. 1 M $VOSO_4$ + 5M $H_2SO_4$ 혼합용액과 2 M $VOSO_4$ + 2.5M $H_2SO_4$ 혼합된 용액의 전해액 시스템에서 Cyclic Voltammetry(CV) 방법을 이용하여 -0.7 V에서 1.6 V vs. SCE의 전위범위에서 전극의 특성을 실험한 결과, 높은 농도의 2M $VOSO_4$ 전해액에서도 바나듐 이온들의 redox couple 반응을 잘 나타내고 있으며 가역성도 우수한 것으로 나타났다. 따라서 본 연구에서 제조된 일체화된 흑연/DSA 전극을 redox flow battery에 적용할 경우에 고내구성, 내부식성 및 전지의 에너지밀도, 출력밀도와 에너지효율을 향상시킬 것으로 판단된다.

Keywords

References

  1. C. Rydh, ‘Environmental assessment of vanadium redox and lead-acid batteries for stationary energy storage’ J. Power Sources, 80, 21 (1999). https://doi.org/10.1016/S0378-7753(98)00249-3
  2. G. Radford J. Cox, R. Wills, and E. Walsh, ‘Electrochemical characterisation of activated carbon particles used in redox flow battery electrode’ J. Power Sources, 185, 1499 (2008). https://doi.org/10.1016/j.jpowsour.2008.08.020
  3. P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You, and B. Yi, ‘A novel electrode-bipolar plate for vanadium redox flow battery applications’ J. Power Sources, 175, 613 (2008). https://doi.org/10.1016/j.jpowsour.2007.09.006
  4. G. Oriji, Y. Katayama, and T. Miura, ‘Investigation on V(IV)/V(V) species in a vanadium redox flow battery’ Electrochimica Acta, 49, 3091 (2004). https://doi.org/10.1016/j.electacta.2004.02.020
  5. F. Xue, Y. Wang, W. wang, and X. Wang, ‘Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery’ Electrochimica Acta, 53, 6636 (2008). https://doi.org/10.1016/j.electacta.2008.04.040
  6. K. Huang, X. Li, S. Liu, N. Tan, and L. Chen, ‘Research progress of vanadium redox flow battery for energy storage in China’ Renewable Energy, 33, 186 (2008). https://doi.org/10.1016/j.renene.2007.05.025
  7. H. Vafiadis and M. Kazacos, 'Evaluation of membrane for the novel vanadium bromine redox flow cell' J. Membrane Science, 279, 394 (2006). https://doi.org/10.1016/j.memsci.2005.12.028
  8. M. Chakrabati, R. Dryfe, and E. Roberts, ‘Evaluation of electrolyte for redox flow battery applications’ Electrochimica Acta, 52, 2189 (2007). https://doi.org/10.1016/j.electacta.2006.08.052
  9. F. Rahman and M. Kazacos, ‘Vanadium redox battery : Positive-cell electrolyte studies’ J. Power Sources, 189, 1212 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.113
  10. H. Zhu, Y. Zhang, L. Yue, W. Li, G. Li, D. Shu, and H. Chen, ‘Graphite-carbon nanotube composite electrodes for all vanadium redox flow battery’ J. Power Sources, 184, 637 (2008). https://doi.org/10.1016/j.jpowsour.2008.04.016
  11. H. Xhou, H. Zhang, P. Zhao, and B. Yi, ‘A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery’ Electrochimica Acta, 51, 6304 (2006). https://doi.org/10.1016/j.electacta.2006.03.106
  12. B. Sun and M. Kazacos, ‘Chemical Modification and electrochemical behaviour of graphite fibre in acidic vanadium solution’ Electrochimica Acta, 36, 513 (1991). https://doi.org/10.1016/0013-4686(91)85135-T
  13. B. Sun and M. Kazacos, ‘Chemical Modification of graphite electrode materials for vanadium redox flow battery application’ Electrochimica Acta, 37, 2459 (1992). https://doi.org/10.1016/0013-4686(92)87084-D
  14. B. Sun and M. Kazacos, ‘Modification of graphite electrode materials for vanadium redox flow battery application’ Electrochimica Acta, 37, 1253 (1992). https://doi.org/10.1016/0013-4686(92)85064-R
  15. W. Wang and X. Wang, ‘Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery’ Electrochimica Acta, 52, 6755 (2007). https://doi.org/10.1016/j.electacta.2007.04.121
  16. B.E. Conway and G. Jerkiewicz, ‘Nature of electrosorbed H and its relation to metal dependance of catalysis in cathodic $H_2$ evolution’ Solid State Ionics, 150, 93 (2002). https://doi.org/10.1016/S0167-2738(02)00266-7

Cited by

  1. Application of Porous Carbon Catalyst Activating Reaction of Positive Electrode in Vanadium Redox Flow Battery vol.23, pp.3, 2014, https://doi.org/10.5855/ENERGY.2014.23.3.150
  2. Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries vol.32, pp.2, 2011, https://doi.org/10.5012/bkcs.2011.32.2.571