• 제목/요약/키워드: recycled water

검색결과 658건 처리시간 0.029초

재생골재를 이용한 연약지반개량 (Improvement of Soft Ground by Using Recycled Aggregates)

  • 이달원;이정준;김시중
    • 농업과학연구
    • /
    • 제37권1호
    • /
    • pp.97-104
    • /
    • 2010
  • In this study, a laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use alternative material of sand in soft ground is performed. The vertical and horizontal coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~4.0 times and 3.0~3.3 times greater than sand, respectively. Therefore, it showed enough to be an alternative material to the sand which had been being used as the vertical and horizontal drainage material before. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. When water level drops suddenly, the pore water pressure of the recycled aggregate and crushed aggregate is reduced to nearly zero. Therefore, it was applicable to the field because discharge capacity was similarity to that of sand. The settlement in crushed aggregates and recycled aggregate decreases gradually with the load increase. When water level drops suddenly, earth pressure in all drains materials was evaluated the equivalent drainage capacity similarity to sand because it show approaching the nearly zero.

파쇄횟수가 순환골재의 품질특성에 미치는 영향 (The Material Properties on the Crushing Effect of Recycled Aggregates)

  • 원철;박상준
    • 한국건설순환자원학회논문집
    • /
    • 제5권1호
    • /
    • pp.125-130
    • /
    • 2010
  • 최근 천연골재의 부족현상과 더불어 도심지의 재개발 재건축 사업 등이 진행됨에 따라 발생하는 막대한량의 폐콘크리트는 현재 당면하고 있는 심각한 문제라 할 수 있다. 따라서 본 연구에서는 원콘크리트의 배합조건 및 골재특성이 콘크리트의 유동 및 강도특성에 미치는 영향을 평가할 목적으로 동일 배합조건의 공시체를 제작하여 6개월간 폭로시킨 후, 파쇄하여 순환 골재로 사용함으로서 원콘크리트에 적용된 콘크리트의 특성이 순환골재의 기초특성에 미치는 영향을 평가하고, 아울러 천연골재와의 혼합비율에 따른 품질개선 효과 등에 대하여 검토하였다. 검토결과, 순환골재를 단독으로 사용하는 방안보다는 양질의 천연골재와 함께 적정비율 혼합하고, 여기에 물-결합재비가 다소 큰 일반강도 범위의 콘크리트에 대상으로 활용하는 것이 유효하다는 결론을 얻었다.

  • PDF

Effects of Nanoclay and Glass Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs

  • Seo, Young-Rok;Kim, Birm-June;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • 제47권4호
    • /
    • pp.472-485
    • /
    • 2019
  • When wood plastic composites (WPCs) have been used for a certain period of time, they become waste materials and should be recycled to reduce their environmental impact. Waste WPCs can be transformed into reinforced composites, in which fillers are used to improve their performance. In this study, recycled WPCs were prepared using different proportions of waste WPCs, nanoclay, and glass fiber. The effects of nanoclay and glass fiber on the microstructural, mechanical, thermal, and water absorption properties of the recycled WPCs were investigated. X-ray diffraction showed that the nanoclay intercalates in the WPCs. Additionally, scanning electron micrographs revealed that the glass fiber is adequately dispersed. According to the analysis of mechanical properties, the simultaneous incorporation of nanoclay and glass fiber improved both tensile and flexural strengths. However, as the amount of fillers increases, their dispersion becomes limited and the tensile and flexural modulus were not further improved. The synergistic effect of nanoclay and glass fiber in recycled WPCs enhanced the thermal stability and crystallinity ($X_c$). Also, the presence of nanoclay improved the water absorption properties. The results suggested that recycled WPCs reinforced with nanoclay and glass fiber improved the deteriorated performance, showing the potential of recycled waste WPCs.

Performance of self-compacting concrete made with coarse and fine recycled concrete aggregates and ground granulated blast-furnace slag

  • Djelloul, Omar Kouider;Menadi, Belkacem;Wardeh, George;Kenai, Said
    • Advances in concrete construction
    • /
    • 제6권2호
    • /
    • pp.103-121
    • /
    • 2018
  • This paper reports the effects of coarse and fine recycled concrete aggregates (RCA) on fresh and hardened properties of self-compacting concrete (SCC) containing ground granulated blast-furnace slag (GGBFS) as cement replacement. For this purpose, three SCC mixes groups, were produced at a constant water to binder ratio of 0.38. Both fine and coarse recycled aggregates were used as natural aggregates (NA) replacement at different substitution levels of 0%, 25%, 50%, 75% and 100% by volume for each mix group. Each group, included 0, 15% or 30% GGBFS as Portland cement replacement by weight. The SCC properties investigated were self-compactability parameters (i.e., slump flow, T500 time, V-funnel flow time, L-box passing ability and sieve stability), compressive strength, capillary water absorption and water penetration depth. The results show that the combined use of RCA with GGBFS had a significant effect on fresh and hardened SCC mixes. The addition of both fine and coarse recycled aggregates as a substitution up to 50% of natural aggregates enhance the workability of SCC mixes, whereas the addition from 50 to 100% decreases the workability, whatever the slag content used as cement replacement. An enhancement of workability of SCC mixes with recycled aggregates was noticed as increasing GGBFS from 0 to 30%. RCA content of 25% to 50% as NA replacement and cement replacement of 15% GGBFS seems to be the optimum level to produce satisfactory SCC without any bleeding or segregation. Furthermore, the addition of slag to recycled concrete aggregates of SCC mixes reduces strength losses at the long term (56 and 90 days). However, a decrease in the capillary water absorption and water permeability depth was noticed, when using RCA mixes with slag.

순환골재의 부착 모르타르량이 콘크리트의 특성에 미치는 영향 (Effect of the Amount of Attached Mortar of Recycled Aggregates on the Properties of Concrete)

  • 이원기;최종오;정용욱
    • 한국건설순환자원학회논문집
    • /
    • 제3권2호
    • /
    • pp.132-139
    • /
    • 2015
  • 본 연구는 파쇄처리 순환골재를 사용한 콘크리트의 특성을 검토하기 위하여 순환골재의 흡수율별 단위시멘트량 및 물시멘트비를 변화시켜 콘크리트의 특성에 미치는 영향을 검토하였다. 실험결과 물시멘트비가 높은 저강도 배합에서는 파쇄처리 순환골재를 사용한 콘크리트와 쇄석 콘크리트의 압축강도가 동등한 수준으로 나타나 순환골재의 부착모르타르 영향이 작은 것으로 나타났다. 그러나, 물시멘트비가 낮은 고강도 배합에서는 파쇄처리 순환골재를 사용한 콘크리트가 부착모르타르의 영향으로 쇄석을 사용한 콘크리트보다 약 40%의 압축강도저하를 나타내었다. 한편, 흡수율 7%인 순환골재의 건조수축량은 재령 10주에서 흡수율 1%인 쇄석의 $-310{\times}10^{-6}$보다 2배 증가된 $-700{\times}10^{-6}$을 나타내어 콘크리트용 골재로의 재활용시 건조수축에 대한 검토가 선행되어야 할 것으로 사료된다. 또한 단위시멘트량 $450kg/m^3$인 부배합 콘크리트의 압축강도는 흡수율 3%인 순환골재 사용시 쇄석 사용 콘크리트와 동등하게 나타난 반면, 흡수율 7%인 순환골재를 사용한 경우에는 쇄석 사용 콘크리트에 비해 약 7%정도 낮게 나타났다. 그러나, 단위시멘트량 $350kg/m^3$인 일반배합 콘크리트의 압축강도는 쇄석 사용 콘크리트에 비해 압축강도 저하가 현저하게 나타났다.

산처리에 의한 순환잔골재의 품질과 모르타르의 특성에 관한 연구 (A Study on the Recycled Fine Aggregate and Properties of Mortar by the Acid Treatment)

  • 김하석;선정수;곽은구;한기석;이도헌;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.81-84
    • /
    • 2006
  • This study is intended for how to utilize the recycled fine aggregate which is produced by concrete wastes. It analyzes the quality of the fine aggregate which is reproduced through the acid treatment process, and comprehends the characteristics of mortar using the recycled fine aggregate to review whether it can be put to practical use for concrete. The conclusion of the study are as follows 1. The recycled fine aggregate through the acid treat shows the low rate of absorption and high density. 2. Compared to the mortar made from acid liquid precipitated recycled fine aggregate, using nature water precipitated one reduces the flow. 3. The compressive strength of mortar using recycled fine aggregate tends to be reduced according to the kind of precipitated water. Based on the above results, the recycled fine aggregate through the acid treatment process satisfies the quality standards of the first-grade recycled fine aggregate of KS F 2573 (recycled fine aggregate for concrete) but it is concluded that the recycled fine aggregate through the acid treatment process can not used as fine aggregate used concrete because it has destructive characteristics when the mortar is produced

  • PDF

콜타르 오염토양의 슬러리상 생물반응기 처리를 위한 일단 및 이단 재순환식 공정의 효율성 (Effectiveness of One- and Dual-Stage Recycled-Water Systems in Slurry Bioreactor Treatment for Coal Tar-Contaminated Soil)

  • 남궁완;박진홍;이노섭;김정대;박준석
    • 한국환경보건학회지
    • /
    • 제31권5호
    • /
    • pp.423-430
    • /
    • 2005
  • This research was performed to evaluate the effectiveness of one- and dual-stage recycled-water systems in slurry bioreactor treatment for coal tar-contaminated soil. Silty loam soil was used for this research. Coal tar and 14 target PAHs (Polycyclic Aromatic Hydrocarbons) concentration in the soil were determined with gas chromatography. There was no significant difference between removal efficiencies of one- and dual-stage recycled water systems in case of about 4,000 mg coar tar/kg. However, the dual-stage system increased significantly the removal efficiency in case of about 20,000 mg coar tar/kg and the first-order kinetic constant of the system was over 1.5 times higher than that of one-stage recycled water system. 3-Ring compounds in PAHs was removed completely within 30 days of operation. Coar tar was removed in over 96% through biodegradation and removed in about 4% by evaporation. High correlation coefficient($r^2=0.91$) was found between water solubility and removal efficiency of the cyclic compounds.

순환잔골재를 사용한 굳지 않은 콘크리트의 특성 (Properties of Fresh Concrete with Recycled fine Aggregates)

  • 최기선;유영찬;윤현도;김긍환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.373-376
    • /
    • 2008
  • The objective of this study is to investigate the properties of fresh concrete with recycled fine aggregates. Three different kinds of fine aggregate with natural, high and low quality recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled fine aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of the concrete mixtures with constant slump is not affected by the replacement ratio of recycled fine aggregate. Therefore, the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

  • PDF

Characteristics of sustainable concrete incorporating recycled coarse aggregates and colloidal nano-silica

  • Mukharjee, Bibhuti Bhusan;Barai, Sudhirkumar V
    • Advances in concrete construction
    • /
    • 제3권3호
    • /
    • pp.187-202
    • /
    • 2015
  • The present study addresses about the development of sustainable concrete utilizing recycled coarse aggregates manufactured form waste concrete and colloidal Nano-Silica. Experimental investigations are carried out to determine compressive and tensile strength of concrete mixes designed with recycled coarse aggregates and different percentages of Nano-Silica. Moreover, water absorption, density and volume voids of concrete mixes are also examined to ascertain the influence of Nano-Silica on behavior of recycled aggregate concrete. The outcomes of the research depict that properties of concrete mixes are significantly affected with the introduction of recycled coarse aggregates in place of the natural coarse aggregates. However, the study reveals that the depletion of behavior of recycled aggregate concrete could be restored with the incorporation of little amount (3%) of Nano-Silica.

순환 굵은 골재의 함수상태와 양생조건에 따른 콘크리트의 압축강도 (Compressive Strength of Concrete due to Moisture Conditions of Recycled Coarse Aggregates and Curing Conditions)

  • 문경태;박상렬;김승은
    • 대한토목학회논문집
    • /
    • 제39권4호
    • /
    • pp.485-492
    • /
    • 2019
  • 본 연구는 순환 굵은 골재의 함수상태가 콘크리트의 압축강도에 미치는 영향을 물/결합재 비와 양생 조건을 변수로 하여 평가하였다. 표건상태의 순환골재는 콘크리트의 강도발현을 저하시켰는데, 이는 순환골재의 높은 흡수율에 의한 표면수의 증가로 골재와 시멘트 페이스트 사이의 부착강도가 저하되었기 때문이다. 골재의 종류와 함수상태가 물/결합재 비의 변화에 따라 압축강도에 미치는 영향의 정도는 비슷하였다. 그러나 양생조건에 대해서는 골재의 종류에 따라 상당한 차이를 보였다. 대기양생을 시킨 경우 높은 흡수율을 가진 순환골재는 수화작용에 필요한 수분을 감소시키고, 수분증발을 증가시켜 강도발현을 저해하였다. 순환골재의 함수상태는 콘크리트의 압축강도에 상당한 영향을 줬으며, 순환골재콘크리트 생산시 골재의 흡수율에 따른 함수상태에 대한 관리가 필요하다. 또한 순환골재 콘크리트의 경우 적절한 품질관리를 위해 양생관리가 매우 중요하다.