Cardiac disease is one of the leading causes of death in Korea. In quantitative analysis of cardiac function and morphological information by three-dimensional reconstruction of magnetic resonance images, left ventricle provides an important role functionally and physiologically. However, existing procedures mostly rely on the extensive human interaction and are seldom evaluated on clinical applications. In this study, we developed a system which could perform automatic extraction of enpicardial and endocardial contour and analysis of cardiac function to evaluate reliability and stability of each system comparing with the result of ARGUS system offered 1.5T Siemens MRI system and manual method performed by clinicians. For various aspects, we investigated reliability of each system by compared with left ventricular contour, end-diastolic volume (EDV), end-systolic volume (ESV), stock volume (SV), ejection fraction (EF), cardiac output (CO) and wall thickness (WT). When comparing with manual method, extracted results of developed process using minimum error threshold (MET) method that automatically extracts contour from cardiac MR images and ARGUS system were demonstrated as successful rate 90% of the contour extraction. When calculating cardiac function parameters using MET and comparing with using correlation coefficients analysis method, the process extracts endocardial and epicardial contour using MET, values from automatic and ARGUS method agreed with manual values within :t 3% average error. It was successfully demonstrated that automatic method using threshold technique could provide high potential for assessing of each parameters with relatively high reliability compared with manual method. In this study, the method developed in this study could reduce processing time compared with ARGUS and manual method due to a simple threshold technique. This method is useful for diagnosis of cardiac disease, simulating physiological function and amount of blood flow of left ventricle. In addition, this method could be valuable in developing automatic systems in order to apply to other deformable image models.
Long chain alkyl diols (LCDs)은 다양한 해양 환경 퇴적물에서 관측되고 있다. Rampen et al. (2012)은 해양 표층 퇴적물에서 분석된 LCDs 중 $C_{30}$ 1,15-diol, $C_{28}$ 1,13-diol, $C_{30}$ 1,13-diol를 이용하여 Long chain Diol Index (LDI)라는 고수온 프록시를 제시하였다. 일반적으로 LCDs의 정성 및 정량 분석은 CP-Sil5CB와 DB-5ms 컬럼을 사용해 GC-MS를 주 기반으로 한다. 본 연구에서는 서로 다른 해양환경(동해 및 서북극해)에서 획득한 해양퇴적물을 활용하여 특성이 다른 세가지 GC 컬럼(CP-Sil5CB, HP-5ms, DB-5)이 LCDs의 정량 분석에 미치는 영향을 검토하였다. 본 연구를 통해 일반적으로 CP-Sil5CB로 분석된 농도 결과가 HP-5ms와 DB-5로 분석된 농도 결과와 통계적으로 유의한 차이가 있는 것으로 확인되었다. 하지만 LDI로 복원된 표층수온의 컬럼 간 편차는 동해 퇴적물의 경우 $0.1-0.2^{\circ}C$, 서북극해 퇴적물의 경우 $0.2-0.7^{\circ}C$로 LDI의 calibration error 범위(${\pm}1{\sigma}$) 보다 작았다. 결론적으로 본 연구는 컬럼에 따라 LCDs의 정량 결과는 현저한 차이를 보일 수 있지만, LDI 프록시 값에 미치는 영향은 상대적으로 미비함을 보여 주었다. 따라서 LDI 프록시를 활용한 동해 및 서북극 해양 퇴적물의 고수온 복원에 특성이 다른 컬럼을 사용 할 수 있음을 시사하였다.
77 GHz frequency modulation continuous wave radar를 이용한 W-band synthetic aperture radar (SAR) system에 대한 연구가 활발히 진행되고 있다. 고해상도의 W-band SAR 영상을 복원하기 위해서는 스테레오 카메라 또는 라이다(LiDAR)에서 획득한 point cloud를 6 degrees of freedom (DOF)의 방향에서 변환하여 SAR 영상 신호처리에 적용하는 것이 필요하다. 하지만 서로 다른 센서로부터 획득한 영상의 기하구조가 달라 정합하는데 어려움을 가진다. 본 연구에서 SAR 영상의 엔트로피(entropy)에 따른 경사 하강법을 이용하여 point cloud의 6 DOF를 구하고 최적의 depth map을 추출하는 기법을 제시한다. 구축한 W-band SAR system으로 주요 도로 환경 객체인 나무를 복원하는 실험을 수행하였다. 엔트로피에 따른 경사 하강법을 이용하여 복원한 SAR 영상이 기존의 레이더 좌표에서 복원한 SAR 영상보다 mean square error는 53.2828 감소했고, structural similarity index는 0.5529 증가한 것을 보였다.
목적: ML-EM (The maximum likelihood-expectation maximization) 기법은 방출과 검출 과정에 대한 통계학적 모델에 기반한 재구성 알고리즘이다. ML-EM은 결과 영상의 정확성과 유용성에 있어 많은 이점이 있는 반면 반복적인 계산과 방대한 작업량 때문에 CPU(central processing unit)로 처리할 때 상당한 연산시간이 소요되었다. 본 연구에서는 GPU(graphic processing unit)의 병렬 처리 기술을 ML-EM 알고리즘에 적용하여 영상을 재구성하였다. 대상 및 방법: 엔비디아사(社)의 CUDA 기술을 이용하여 ML-EM 알고리즘의 투사 및 역투사 과정을 병렬화 전략을 구상하였으며 Geforce 9800 GTX+ 그래픽 카드를 이용하여 병렬화 연산을 수행하여 기존의 단일 CPU기반 연산법과 비교하였다. 각 반복횟수마다 투사 및 역투사 과정에 걸리는 총 지연 시간과 퍼센트 오차(percent error)를 측정하였다. 총 지연 시간에는 RAM과 GPU 메모리 간의 데이터 전송 지연 시간도 포함하였다. 결과: 모든 반복횟수에 대해 CPU 기반 ML-EM 알고리즘보다 GPU 기반 알고리즘이 더 빠른 성능을 나타내는 것을 확인하였다. 단일 CPU 및 GPU 기반 ML-EM의 32번 반복연산에 있어 각각 3.83초와 0.26초가 걸렸으며 GPU의 병렬연산의 경우 15배 정도의 개선된 성능을 보였다. 반복횟수가 1024까지 증가하였을 경우, CPU와 GPU 기반 알고리즘은 각각 18분과 8초의 연산시간이 걸렸다. GPU 기반 알고리즘이 약 135배 빠른 처리속도를 보였는데 이는 단일 CPU 계산이 특정 반복횟수 이후 나타나는 시간 지연에 따른 것이다. 결과적으로, GPU 기반 계산이 더 작은 편차와 빠른 속도를 보였다. 결론: ML-EM 알고리즘에 기초한 GPU기반 병렬 계산이 처리 속도와 안정성을 더 증진시킴을 확인하였으며 이를 활용해 다른 영상 재구성 알고리즘에도 적용시킬 수 있을 것으로 기대한다.
위성기반 해수면온도는 광역 모니터링이 가능한 장점이 있지만, 다양한 환경적 그리고 기계적 이유로 인한 시공간적 자료공백이 발생한다. 자료공백으로 인한 활용성의 한계가 있으므로, 공백이 없는 자료 생산이 필수적이다. 따라서 본 연구에서는 한반도 주변 해역에 대해 극궤도와 정지궤도 위성에서 생산되는 해수면온도 자료를 두 단계의 기계학습을 통해 융합하여 4 km의 공간해상도를 가지는 일별 해수면온도 합성장을 만들었다. 첫번째 복원 단계에서는 Data INterpolate Convolutional AutoEncoder (DINCAE) 모델을 이용하여 다종 위성기반 해수면온도 자료를 합성하여 복원하였고, 두번째 보정 단계에서는 복원된 해수면온도 자료를 현장관측자료에 맞춰 Light Gradient Boosting Machine (LGBM) 모델로 학습시켜 최종적인 일별 해수면온도 합성장을 만들었다. 개발된 모델의 검증을 위해 복원 단계에서 무작위 50일의 자료 중 일부분을 제거하여 복원한 뒤 제거된 영역에 대해 검증하였으며, 보정 단계에서는 Leave One Year Out Cross Validation (LOYOCV) 기법을 이용하여 현장자료와의 정확도를 검증하였다. DINCAE 모델의 해수면온도 복원 결과는 상당히 높은 정확도(R2=0.98, bias=0.27℃, RMSE=0.97℃, MAE=0.73℃)를 보였다. 두번째 단계의 LGBM 보정 모델의 정확도 개선은 표층 뜰개 부이와 계류형 부이 현장자료와의 비교에서 모두 상당한 향상(RMSE=∆0.21-0.29℃, rRMSE=∆0.91-1.65%, MAE=∆0.17-0.24℃)을 보여주었다. 특히, 모든 현장 자료를 이용한 보정 모델의 표층 뜰개 부이와의 정확도는 동일한 현장 자료가 동화된 기존 해수면온도 합성장보다 나은 정확도를 보였다. 또한 LGBM 보정 모델은 랜덤포레스트(random forest)를 사용한 선행연구에서 보고된 과적합의 문제를 상당부분 해결하였다. 보정된 해수면온도는 기존의 초고해상도 해수면온도 합성장들과 유사한 수준으로 수온 전선과 와동 등의 중규모 해양현상을 뚜렷하게 모의하였다. 본 연구는 다종위성 자료와 기계학습 기법을 사용해 시공간적 공백 없는 고해상도 해수면온도 합성장 제작 방법을 제시하였다는 점에서 가치가 있다.
급증하는 간세포암 환자에게 간동맥 화학 색전술은 효과적인 중재적 시술 방법 중 하나이다. 이때 PET/CT 검사는 색전 후 잔존 암세포의 존재 및 전이여부와 예후를 판단하는데 중요한 역할을 한다. 한편 간동맥 화학 색전술에 사용되는 색전물질인 Lipiodol은 PET/CT 검사에서 인공물을 생성하고 정량평가에 영향을 준다. 이에 본 연구는 Lipiodol이 영상에 미치는 영향의 정도를 방사능 값과 백분율 오차로 평가하고자 하였다. 1994 NEMA Phantom에 Lipiodol과 Teflon, 물을 세 개의 삽입물에 넣고 나머지 부분을 배후 방사능 $20{\pm}10MBq$를 주입하고 충분히 섞은 후 2분 30초/bed data를 획득 하였다. 재구성 방법은 반복 영상 재구성법으로 반복횟수 2회, 부분 집합 수 20을 적용하였으며, Lipiodol과 Teflon, 물, 인공물 발생부위, 배후 방사능에 관심영역을 설정하고 방사능 값과 백분율 오차를 산출 하여 비교하였다. 방사능 값은 Teflon, 물, Lipiodol, 삽입물 사이 인공물 발생 부위, 배후 방사능 부위에서 각 영역 중 방사능 값은 $0.09{\pm}0.04$, $0.40{\pm}0.17$, $1.55{\pm}0.75$, $2.5{\pm}1.09$, $2.65{\pm}1.16 kBq/ml$(P<0.05)으로 통계적으로 유의한 차이를 보였다. 백분율 오차가 Lipiodol에서 물에 비해 118%, 배후 방사능에 비해서 52%, Teflon에 비해 180%의 차이가 있었다. Lipiodol을 주입한 후 검사에서 감약 보정의 영향을 받아 오차로 인한 방사능 농도 값이 다른 삽입물에 비해 현저히 높고 배후 방사능보다는 작다는 것을 알 수 있었다. 따라서 Lipiodol과 같은 조영 물질을 사용한 검사에서는 인공물에 대한 영향을 고려해야 하며 임상에서는 감약 보정을 적용하지 않은 영상을 참고해서 검사가 이루어 질 수 있도록 해야 한다.
최근 SPECT/CT의 보급과 함께 다양한 영상보정 방법들을 빠르고 정확하게 적용할 수 있게 되면서, 영상품질 향상과 더불어 정량적 정확성까지 기대할 수 있게 되었다. 그중 Collimator Detector Response (CDR) 회복(recovery)은 검출기면의 거리로부터 발생된 blurring 효과를 보상하여 분해능 회복을 목적으로 하는 보정방법이다. 본 연구에서는 SPECT/CT 영상에서 CDR recovery 가 적용되었을 때 검출거리 변화에 따른 정량적 변화를 알아보고자 하였다. 검출거리의 변화에 따른 획득 계수의 차이를 알아보고자 검출거리를 궤도방식(obit type)에 따라 Circular는 X, Y축 반경 30 cm, Non-Circular는 X, Y축 반경 21 cm, 10 cm, Non-Circular Auto(=Auto Body Contouring_ ABC, spacing limit 1 cm)로 설정하였고, 재구성 방법은 CDR recovery(CDRr)의 사용 유/무에 따른 계수 회복 차이를 알아보고자 OSEM (w/o CDRr)와 Astonish(3D-OSEM with CDRr)로 구분하여 적용하였다. 이 때 감쇠, 산란, 붕괴 보정은 모든 영상에 공통 적용하였다. 정량적 평가를 위해 교정인자(calibration factor_CF) 산출을 목적으로 교정영상(cylindrical phantom, $^{99m}TcO_4$ 123.3 MBq, 물 9293 ml)을 획득하였고, 팬텀 실험을 위하여 50 cc 주사기에 물 31 ml를 채우고 $^{99m}TcO_4$ 123.3 MBq를 설정하여 팬텀영상을 획득하였다. 팬텀 영상에서 주사기 전체 체적에 VOI(volume of interest)를 설정하여 각 조건별로 총 계수 값을 측정하였고, CF를 적용시켜 설정된 참값 대비 추정값의 오차를 구하여 보정에 따른 정량적 정확성을 확인하였다. 산출된 CF는 154.27 (Bq/ml/cps/ml)이며, 각 조건별 영상에서 참값 대비 추정값은 OSEM에서 Circular 86.5%, Non-Circular 90.1%, ABC 91.3% Astonish에서 Circular 93.6%, Non-Circular 93.6%, ABC 93.9%으로 분석되었다. OSEM은 검출거리가 가까울수록 정확성이 높아졌으며, Astonish의 경우에는 거리와 상관없이 거의 유사한 값을 나타내었다. 오차는 OSEM Circular(-13.5%)에서 가장 크고, Astonish ABC(-6.1%)에서 가장 적었다. SPECT/CT영상에서 CDR recovery 적용을 통한 거리보상이 이루어 졌을 때 검출거리가 먼 조건에서도 근접검출과 거의 동일한 정량적 정확성을 보였고, 검출거리의 변화에 영향을 받지 않고 정확한 보정이 가능한 것을 확인 할 수 있었다.
목 적: 나선형 토모테라피 방사선치료를 위한 환자별 품질관리용 라디오크로믹 필름 및 3차원 분석시스템인 Dosimetry CheckTM (DC, MathResolutions, USA)의 성능평가를 시행하였다. 대상 및 방법: 인체모형팬톰(Anderson Rando Phantom, USA)을 이용하여 위치 변이가 있는 3가지 형태의 복부 종양(130.6㎤), 복막 후면 종양(849.0㎤) 및 전 복부 전이 종양(3131.0㎤)을 모델링하였다. 조사면 고정너비(field width, FW)를 2.5-cm, 5.0-cm, 피치(pitch) 0.287, 0.43으로 하여 부위별 4개씩(plan01-plan04), 총 12개의 비교용 치료계획을 수립하였다. 이온전리함(1D)과 라디오크로믹 필름(Gafchromic EBT3, Ashland Advanced Materials, USA)을 치즈팬톰 내 삽입하는 방법(2D)과 빔 플루언스 로그정보를 이용하여 CT영상 위에 선량을 3차원으로 재구성하는 방식의 DC측정을 진행하였다. 스레드효과(thread effect)를 분석을 위해 리플(ripple) 진폭(%)를 계산하였고, 선량 분포의 패턴 분석을 위해 감마인덱스 분석(DD: 3%/DTA: 3mm, 합격 문턱 값: 95%)을 수행하였다. 결 과: 리플 진폭 측정 결과 복막 후면 종양이 평균 23.1%로 가장 높았다. 라디오크로믹 필름의 분석결과, 절대 선량 평균 1.0±0.9%, 감마인덱스분석 평균 96.4±2.2%로 95% 이상 통과하였으나 전 복부 전이 종양과 같이 넓은 부위 평가에 범위의 제한적이었다. 인체모형팬톰에 적용한 DC 분석결과 FW가 5.0-cm인 세 부위의 2D 및 3D 플랜 평균이 91.8±6.4%였다. 세 단면 및 선량 프로파일 분석을 통해 복막 후면 및 전 복부 종양 표적 전체 영역에 분석이 가능하였고, 선량-용적 히스토그램을 통한 계획 선량 대 측정의 선량 오차가 FW 및 pitch에 따라 커지는 것을 확인하였다. 결 론: DC측정방법은 별도의 측정기 없이 조사 중 측정된 빔 플루언스 로그정보만으로 3차원 환자 영상 데이터 위에 선량 오류를 구현할 수 있고 종양의 위치나 크기에 제한이 없어 크고 불규칙한 종양의 나선형 토모테라피의 치료 시 환자별 품질관리 성능이 매우 우수하며 활용도가 높을 것으로 생각한다.
2017년 실시한 경주 고선사지 삼층석탑의 정밀안전진단 과정에서 1975년 석탑 이전 시 2층 탑신석이 회전되었을 가능성이 제기되었다. 이에 일제강점기와 1975년 해체 전후의 관련정보와 사진자료 등을 수집하여 석탑부재에 대한 정밀조사를 진행하였다. 분석결과 1943년 개건 전·후에는 부재의 변동이 없었으나 1975년 이전과정에서 2층 탑신석이 오른쪽 방향으로 90도씩 회전하였고, 1층과 2층의 옥개석 1매가 서로 바뀌었음이 확인되었다. 이러한 석탑부재의 변동이 오류인지를 확인하기 위해 3차원 스캐닝 정보를 토대로 정밀계측과 옥개석 부재의 재구성 등을 통해 검증해 보았다. 검증결과 현재 1층 옥개석 4매의 두께는 75~76cm, 2층은 78~79cm로 특이점이 발견되지 않았고, 옥개석 간 연접선의 형상 역시 자연스러웠다. 이에 고선사탑은 조성이후부터 1943년 사이에 중수(重修)된 숨은 연혁이 존재하며, 고대에 발생한 오류를 1975년 바로잡은 것이라고 결론지었다. 아울러, 2층 탑신석의 회전은 옥개석 위치변동에 따른 부수적 조치일 가능성을 제시하였다.
필기체 문자 인식은 온라인 필기체 문자 인식과 오프라인 필기체 문자 인식으로 나누어진다. 온라인 필기체 문자 인식은 타블렛과 같은 펜 기반의 전자식 입력 장치를 이용하여 필기의 순서와 획의 위치와 같은 동적인 필기 정보를 문자의 입력 시 획득할 수 있어 오프라인 필기체 문자 인식에 비해 큰 연구 성과를 이루었다. 그러나 오프라인 필기체 문자 인식은 온라인 필기체 문자 인식에서와 같이 동적인 정보를 입력받을 수 없고, 다양한 필기와 자소의 겹침이 심하며 획 사이의 잡영을 많이 가지고 있어 인식의 전처리 결과에 따라 인식 성능이 크게 달라진다. 본 논문에서는 오프라인 필기체 한글 문자 인식을 위해 문자의 동적인 정보를 포함하는 획을 효과적으로 추출하는 방법을 제안한다. 제안된 방법은 전처리 과정으로 먼저 Watershed 알고리즘을 이용하여 입력된 필기체 문자 영상의 향상 및 이진화를 수행한다. 이진화된 문자부를 변형된 Lu와 Wang의 세선화 알고리즘을 사용하여 세선화를 수행한 후 문자에서의 특징점을 추출하여 세그먼트 화소열을 추출하고, 최대 허용 오차법을 이용하여 벡터화한다. 벡터화의 수행으로 몇 개의 획이 하나의 세그먼트로 묶인 경우, 하나의 세그먼트 화소열은 2 또는 그 이상의 세그먼트 벡터로 분리된다. 추출된 세그먼트 벡터들을 완전한 획으로 재구성하기 위해서 오른손 필기 좌표계 시스템을 이용하여 벡터의 방향적인 성분을 인간의 필기 획의 방향에 알맞게 수정하고, 수정된 세그먼트 벡터의 방향성과 분기 정보를 이용하여 인접한 결합 가능한 세그먼트 벡터를 결합함으로써 문자 인식에 적합한 완전한 획으로 재구성한다. 실험 결과 제안된 방법이 필기체 한글 문자 인식에 적합함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.