나선형 토모테라피 방사선치료의 환자별 품질관리를 위한 라디오크로믹 필름 및 Dosimetry CheckTM의 성능평가

Performance Evaluation of Radiochromic Films and Dosimetry CheckTM for Patient-specific QA in Helical Tomotherapy

  • 박수연 (삼성서울병원 방사선종양학과) ;
  • 채문기 (삼성서울병원 방사선종양학과) ;
  • 임준택 (삼성서울병원 방사선종양학과) ;
  • 권동열 (삼성서울병원 방사선종양학과) ;
  • 김학준 (서울특별시보라매병원 방사선종양학과) ;
  • 정은아 (삼성서울병원 방사선종양학과) ;
  • 김종식 (삼성서울병원 방사선종양학과)
  • Park, Su Yeon (Department of Radiation Oncology, Samsung Comprehensive Cancer Center, Samsung Medical Center) ;
  • Chae, Moon Ki (Department of Radiation Oncology, Samsung Comprehensive Cancer Center, Samsung Medical Center) ;
  • Lim, Jun Teak (Department of Radiation Oncology, Samsung Comprehensive Cancer Center, Samsung Medical Center) ;
  • Kwon, Dong Yeol (Department of Radiation Oncology, Samsung Comprehensive Cancer Center, Samsung Medical Center) ;
  • Kim, Hak Joon (Department of Radiation Oncology, Seoul Metropolitan Government Seoul National University Boramae Medical Center) ;
  • Chung, Eun Ah (Department of Radiation Oncology, Samsung Comprehensive Cancer Center, Samsung Medical Center) ;
  • Kim, Jong Sik (Department of Radiation Oncology, Samsung Comprehensive Cancer Center, Samsung Medical Center)
  • 발행 : 2020.12.27

초록

목 적: 나선형 토모테라피 방사선치료를 위한 환자별 품질관리용 라디오크로믹 필름 및 3차원 분석시스템인 Dosimetry CheckTM (DC, MathResolutions, USA)의 성능평가를 시행하였다. 대상 및 방법: 인체모형팬톰(Anderson Rando Phantom, USA)을 이용하여 위치 변이가 있는 3가지 형태의 복부 종양(130.6㎤), 복막 후면 종양(849.0㎤) 및 전 복부 전이 종양(3131.0㎤)을 모델링하였다. 조사면 고정너비(field width, FW)를 2.5-cm, 5.0-cm, 피치(pitch) 0.287, 0.43으로 하여 부위별 4개씩(plan01-plan04), 총 12개의 비교용 치료계획을 수립하였다. 이온전리함(1D)과 라디오크로믹 필름(Gafchromic EBT3, Ashland Advanced Materials, USA)을 치즈팬톰 내 삽입하는 방법(2D)과 빔 플루언스 로그정보를 이용하여 CT영상 위에 선량을 3차원으로 재구성하는 방식의 DC측정을 진행하였다. 스레드효과(thread effect)를 분석을 위해 리플(ripple) 진폭(%)를 계산하였고, 선량 분포의 패턴 분석을 위해 감마인덱스 분석(DD: 3%/DTA: 3mm, 합격 문턱 값: 95%)을 수행하였다. 결 과: 리플 진폭 측정 결과 복막 후면 종양이 평균 23.1%로 가장 높았다. 라디오크로믹 필름의 분석결과, 절대 선량 평균 1.0±0.9%, 감마인덱스분석 평균 96.4±2.2%로 95% 이상 통과하였으나 전 복부 전이 종양과 같이 넓은 부위 평가에 범위의 제한적이었다. 인체모형팬톰에 적용한 DC 분석결과 FW가 5.0-cm인 세 부위의 2D 및 3D 플랜 평균이 91.8±6.4%였다. 세 단면 및 선량 프로파일 분석을 통해 복막 후면 및 전 복부 종양 표적 전체 영역에 분석이 가능하였고, 선량-용적 히스토그램을 통한 계획 선량 대 측정의 선량 오차가 FW 및 pitch에 따라 커지는 것을 확인하였다. 결 론: DC측정방법은 별도의 측정기 없이 조사 중 측정된 빔 플루언스 로그정보만으로 3차원 환자 영상 데이터 위에 선량 오류를 구현할 수 있고 종양의 위치나 크기에 제한이 없어 크고 불규칙한 종양의 나선형 토모테라피의 치료 시 환자별 품질관리 성능이 매우 우수하며 활용도가 높을 것으로 생각한다.

Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.

키워드

참고문헌

  1. Mackie TR, Holmes TW, Swerdloff S, et al: "Tomotherapy: a new concept in the delivery of dynamic conformal radiotherapy", Med Phys, 20;1709-1719,1993. https://doi.org/10.1118/1.596958
  2. Tome WA, Jaradat HA, Nelson IA, et al: "Helical tomotherapy: image guidance and adaptive dose guidance", Front Radiat Ther Oncol 40, 162-178, 2007. https://doi.org/10.1159/0000106034
  3. Van VM, Field C, Raaijmakers CP, "Comparing step-and-shoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer", Int J Radiat Oncol Biol Phys, 62;1535-1539, 2005. https://doi.org/10.1016/j.ijrobp.2005.04.011
  4. Chen YJ, Liu A, Han C, et al: "Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution", Med Dosimetry, 32:166-171, 2007. https://doi.org/10.1016/j.meddos.2006.12.003
  5. Chen M, Chen Y, Chen Q, et al: "Theoretical analysis of the thread effect in helical TomoTherapy", Med Phys, 38:5945-5960, 2011. https://doi.org/10.1118/1.3644842
  6. Kissick MW, Fenwick J, James JA, et al: "The helical tomotherapy thread effect", Med Phys, 32:1414-1423, 2005. https://doi.org/10.1118/1.1896453
  7. Katja M. Langen, John Balog, Richard Crilly et al: "QA for helical tomotherapy", Med Phys, 37:4197-4212, 2010.
  8. Low DA, Harms WB, Mutic S, et al: "A technique for the quantitative evaluation of dose distributions", Med Phys, 25:656-661,1998. https://doi.org/10.1118/1.598248
  9. Mack A, Ma,ck G, Weltz D, et al: "High precision film dosimetry with GAFCHROMIC films for quality assurance especially when using small fields", Medical Physics, 30:2399-409, 2003. https://doi.org/10.1118/1.1593634
  10. Fuss M, Sturtewagen E, Carlos D et al: "Dosimetric characterization of GafChromic EBT film and its implication on film dosimetry quality assurance", Physics in medicine and biology, 52:4211-25, 2007. https://doi.org/10.1088/0031-9155/52/14/013
  11. Jursinic PA, Sharma R, Reuter J. "MapCHECK used for rotational IMRT measurements: step-and-shoot, TomoTherapy, RapidArc", Med Phys, 37:2837-46, 2010. https://doi.org/10.1118/1.3431994
  12. Jursinic PA, Nelms BE. A, "2D diode array and analysis software for verification of intensity modulated radiation therapy delivery", Med Phys, 30:870-9, 2003. https://doi.org/10.1118/1.1567831
  13. Letourneau D, Gulam M, Yan D, et al: "Evaluation of a 2D diodearray for IMRT quality assurance", Radiother Oncol, 70:199-206, 2004 https://doi.org/10.1016/j.radonc.2003.10.014
  14. Herzen J, Todorovic M, Cremers F, et al: "Dosimetric evaluation of a 2D pixel ionization chamber for implementation in clinical routine", Phys Med Biol, 52:1197-208, 2007. https://doi.org/10.1088/0031-9155/52/4/023
  15. Li JG, Yan G, Liu C., "Comparison of two commercial detector arrays for IMRT quality assurance", J Appl Clin Med Phys, 10:62-74, 2009. https://doi.org/10.1120/jacmp.v10i2.2942
  16. Poppe B, Blechschmidt A, Djouguela A, et al: "Two-dimensional ionization chamber arrays for IMRT plan verification", Med Phys, 33:1005-15, 2006. https://doi.org/10.1118/1.2179167
  17. Spezi E, Angelini AL, Romani F, Ferri A. "Characterization of a 2D ion chamber array for the verification of radiotherapy treatments", Phys Med Biol, 50:3361-73, 2005. https://doi.org/10.1088/0031-9155/50/14/012
  18. Kissick MW, Fenwick J, James JA, et al: "The helical tomotherapy thread effect", Med Phys, 32: 1414-1423, 2005. https://doi.org/10.1118/1.1896453
  19. Chen M, Chen Y, Chen Q, et al: "Theoretical analysis of the thread effect in helical TomoTherapy", Med Phys, 38:5945-5960, 2011. https://doi.org/10.1118/1.3644842
  20. Yutaka T. Michael R. Verneris, Y, et al. "Peripheral Dose Heterogeneity Due to the Thread Effect in Total Marrow Irradiation With Helical Tomotherapy", Int J Radiation Oncol Biol Phys, 87: 832-839, 2013. https://doi.org/10.1016/j.ijrobp.2013.07.017