• Title/Summary/Keyword: reconstructed error

Search Result 321, Processing Time 0.025 seconds

Error Resilient and Concealment Schemes for Still Image Transmission over DSRC System Channel (DSRC시스템 채널 환경에서 정지 영상 전송을 위한 에러 복구 및 은닉 기법)

  • 최은석;백중환
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.13-16
    • /
    • 2001
  • In the Dedicated Short Range Communication (DSRC) system channel, a large number of bit errors occur because of Additive White Gaussian Noise (AWGN) and fading. When an image data is transmitted under the condition, reconstructed image quality is significantly degraded. In this paper, as an alternative to the error correcting code and/or automatic repeat request scheme, we propose an error recovery scheme for image data transmission. We first analyze how transmission errors in the DSRC system channel degrade image quality. Then, in order to improve image quality, we propose error resilient and concealment schemes for still image transmission using DCT-based fixed length coding, hamming code, cyclic redundancy check, and interleaver. Finally, we show its performance by an experiment.

  • PDF

Reduced Order Modeling of Backward-Facing-Step Flow Field (후향계단 유동장 축약모델링 기법)

  • Lee, Jin-Ik;Lee, Eun-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.833-839
    • /
    • 2012
  • In this paper, we analyze the reconstruction error in the modeling of flow field on BFS(Backward Facing Step). In order for the mathematical modelling of a density on the field, the spatial and temporal modes are extracted by POD(Proper Orthogonal Decomposition) method. After formulating the modeling error, we summarize the relationship between the energy strength and the reconstruction errors. Moreover the allowable modeling error limits in the flow control point of view are confined by analysing in the frequency domain as well as time domain of the reconstructed data.

TEMPORAL ERROR CONCEALMENT ALGORITHM BASED ON ADAPTIVE SEACH RANGE AND MULTI-SIDE BOUNDARY INFORMATION FOR H.264/AVC

  • Kim, Myoung-Hoon;Jung, Soon-Hong;Kang, Beum-Joo;Sull, Sang-Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.273-277
    • /
    • 2009
  • A compressed video stream is very sensitive to transmission errors that may severely degrade the reconstructed image. Therefore, error resilience is an essential problem in video communications. In this paper, we propose novel temporal error concealment techniques for recovering lost or erroneously received macroblock (MB). To reduce the computational complexity, the proposed method adaptively determines the search range for each lost MB to find best matched block in the previous frame. And the original corrupted MB split into for $8{\times}8$ sub-MBs, and estimates motion vector (MV) of each sub-MB using its boundary information. Then the estimated MVs are utilized to reconstruct the damaged MB. In simulation results, the proposed method shows better performance than conventional methods in both aspects of PSNR.

  • PDF

Improved Redundant Picture Coding Using Polyphase Downsampling for H.264

  • Jia, Jie;Choi, Hae-Chul;Kim, Jae-Gon;Kim, Hae-Kwang;Chang, Yilin
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.18-26
    • /
    • 2007
  • This paper presents an improved redundant picture coding method that efficiently enhances the error resiliency of H.264. The proposed method applies polyphase downsampling to residual blocks obtained from inter prediction and selectively encodes the rearranged residual blocks in the redundant picture coding process. Moreover, a spatial-temporal sample construction method is developed for the redundant coded picture, which further improves the reconstructed picture quality in error prone environments. Simulations based on JM11.0 were run to verify the proposed method on different test sequences in various error prone environments with average packet loss rates of 3%, 5%, 10%, and 20%. Results of the simulations show that the presented method significantly improves the robustness of H.264 to packet loss by 1.6 dB PSNR on average over the conventional redundant picture coding method.

  • PDF

Visual Quality Enhancement of Three-Dimensional Integral Imaging Reconstruction for Partially Occluded Objects Using Exemplar-Based Image Restoration

  • Zhang, Miao;Zhong, Zhaolong;Piao, Yongri
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.1
    • /
    • pp.57-63
    • /
    • 2016
  • In generally, the resolution of reconstructed three-dimensional images can be seriously degraded by undesired occlusions in the integral imaging system, because the undesired information of the occlusion overlap the three-dimensional images to be reconstructed. To solve the problem of the undesired occlusion, we present an exemplar-based image restoration method in integral imaging system. In the proposed method, a minimum spanning tree-based stereo matching method is used to remove the region of undesired occlusions in each elemental image. After that, the removed occlusion region of each elemental images are re-established by using the exemplar-based image restoration method. For further improve the performance of the image restoration, the structure tensor is used to solve the filling error cause by discontinuous structures. Finally, the resolution enhanced three-dimensional images are reconstructed by using the restored elemental images. The preliminary experiments are presented to demonstrate the feasibility of the proposed method.

Quality Enhancement of a Complex Holographic Display Using a Single Spatial Light Modulator and a Circular Grating

  • Bang, Le Thanh;Piao, Yan Ling;Kim, Jong Jae;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.70-77
    • /
    • 2016
  • This paper proposes an optical system for complex holographic display that enhances the quality of the reconstructed three-dimensional image. This work focuses on a new design for an optical system and the evaluation of the complex holographic display, using a single spatial light modulator (SLM) and a circular grating. The optical system is based on a 4-f system in which the imaginary and real information of the hologram is displayed on concentric rectangular areas of the SLM and circular grating. Thus, this method overcomes the lack of accuracy in the pixel positions between two window holograms in previous studies, and achieves a higher intensity of the real object points of the reconstructed hologram than the original phase-reconstructed hologram. The proposed method provides approximately 30% less NMRS (Normal Root Mean Square) error, compared to previous systems, which is verified by both simulation and optical experiment.

Optical Image Split-encryption Based on Object Plane for Completely Removing the Silhouette Problem

  • Li, Weina;Phan, Anh-Hoang;Jeon, Seok-Hee;Kim, Nam
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.384-391
    • /
    • 2013
  • We propose a split-encryption scheme on converting original images to multiple ciphertexts. This conversion introduces one random phase-only function (POF) to influence phase distribution of the preliminary ciphertexts. In the encryption process, the original image is mathematically split into two POFs. Then, they are modulated on a spatial light modulator one after another. And subsequently two final ciphertexts are generated by utilizing two-step phase-shifting interferometry. In the decryption process, a high-quality reconstructed image with relative error $RE=7.6061{\times}10^{-31}$ can be achieved only when the summation of the two ciphertexts is Fresnel-transformed to the reconstructed plane. During the verification process, any silhouette information was invisible in the two reconstructed images from different single ciphertexts. Both of the two single REs are more than 0.6, which is better than in previous research. Moreover, this proposed scheme works well with gray images.

Spatial Frequency Coverage and Image Reconstruction for Photonic Integrated Interferometric Imaging System

  • Zhang, Wang;Ma, Hongliu;Huang, Kang
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.606-616
    • /
    • 2021
  • A photonic integrated interferometric imaging system possesses the characteristics of small-scale, low weight, low power consumption, and better image quality. It has potential application for replacing conventional large space telescopes. In this paper, the principle of photonic integrated interferometric imaging is investigated. A novel lenslet array arrangement and lenslet pairing approach are proposed, which are helpful in improving spatial frequency coverage. For the novel lenslet array arrangement, two short interference arms were evenly distributed between two adjacent long interference arms. Each lenslet in the array would be paired twice through the novel lenslet pairing approach. Moreover, the image reconstruction model for optical interferometric imaging based on compressed sensing was established. Image simulation results show that the peak signal to noise ratio (PSNR) of the reconstructed image based on compressive sensing is about 10 dB higher than that of the direct restored image. Meanwhile, the normalized mean square error (NMSE) of the direct restored image is approximately 0.38 higher than that of the reconstructed image. Structural similarity index measure (SSIM) of the reconstructed image based on compressed sensing is about 0.33 higher than that of the direct restored image. The increased spatial frequency coverage and image reconstruction approach jointly contribute to better image quality of the photonic integrated interferometric imaging system.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

Error Concealment Based on Multiple Representation for Wireless Transmission of JPEG2000 Image

  • Ou, Yang;Lee, Won-Young;Yang, Tae-Uk;Chee, Sung-Taek;Rhee, Kyung-Hyune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.68-78
    • /
    • 2008
  • The transmission of multimedia information over error-prone channels such as wireless networks has become an important area of research. In this paper, we propose two Error Concealment(EC) schemes for wireless transmission of JPEG2000 image. The Multiple Representation(MR) is employed as the preprocessing in our schemes, whereas the main error concealing operation is applied in wavelet domain at receiver side. The compressed code-stream of several subsampled versions of original image is transmitted over a single channel with random bit errors. In the decoder side, the correctly reconstructed wavelet coefficients are utilized to recover the corrupted coefficients in other sub-images. The recovery is carried out by proposed basic(MREC-BS) or enhanced(MREC-ES) methods, both of which can be simply implemented. Moreover, there is no iterative processing during error concealing, which results a big time saving. Also, the simulation results confirm the effectiveness and efficiency of our proposed schemes.