• Title/Summary/Keyword: recombinant human erythropoietin

Search Result 78, Processing Time 0.026 seconds

Structural Identification of a Non-Glycosylated Variant at Ser126 for O-Glycosylation Site from EPO BRP, Human Recombinant Erythropoietin by LC/MS Analysis

  • Byeon, Jaehee;Lim, Yu-Ri;Kim, Hyong-Ha;Suh, Jung-Keun
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.496-505
    • /
    • 2015
  • A variant peak was detected in the analysis of RP-HPLC of rHu-EPO, which has about 7% relative content. Fractions of the main and the variant peaks were pooled separately and further analyzed to identify the molecular structure of the variant peak. Total mass analysis for each peak fraction using ESI-TOF MS shows differences in molecular mass. The fraction of the main peak tends to result in higher molecular masses than the fraction of the variant. The detected masses for the variant are about 600-1000 Da smaller than those for the main peak. Peptide mapping analysis for each peak fraction using Asp-N and Glu-C shows differences in O-glycopeptide profiles at Ser126. The O-glycopeptides were not detected in the fraction of the variant. It is concluded that the variant peak is non-O-glycosylated rHu-EPO and the main peak is fully O-glycosylated rHu-EPO at Ser126.

The neuroprotective effect of recombinant human erythropoietin via an antiapoptotic mechanism on hypoxic-ischemic brain injury in neonatal rats

  • Kim, Moon-Sun;Seo, Yoo-Kyung;Park, Hye-Jin;Lee, Kye-Hyang;Lee, Kyung-Hoon;Choi, Eun-Jin;Kim, Jin-Kyung;Chung, Hai-Lee;Kim, Woo-Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.10
    • /
    • pp.898-908
    • /
    • 2010
  • Purpose: The neuroprotective effects of erythropoietin (EPO) have been recently shown in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity; however, limited data are available for such effects during the neonatal periods. Therefore, we investigated whether recombinant human EPO (rHuEPO) can protect against perinatal HI brain injury via an antiapoptotic mechanism. Methods: The left carotid artery was ligated in 7-day-old Sprague-Dawley (SD) rat pups ($in$ $vivo$ model). The animals were divided into 6 groups: normoxia control (NC), normoxia sham-operated (NS), hypoxia only (H), hypoxia+vehicle (HV), hypoxia+rHuEPO before a hypoxic insult (HE-B), and hypoxia+rHuEPO after a hypoxic insult (HE-A). Embryonic cortical neuronal cell culture of SD rats at 18 days gestation ($in$ $vitro$ model) was performed. The cultured cells were divided into 5 groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated groups. Results: In the $in$ $vivo$ model, Bcl-2 expressions in the H and HV groups were lower than those in the NC and NS groups, whereas those in the HE-A and HE-B groups were greater than those of the H and HV groups. The expressions of Bax and caspase-3 and the ratio of Bax/Bcl-2 were in contrast to those of Bcl-2. In the $in$ $vitro$ model, the patterns of Bcl-2, Bax, and caspase-3 expression and Bax/Bcl-2 ratio were similar to the results obtained in the in vivo model. Conclusion: rHuEPO exerts neuroprotective effect against perinatal HI brain injury via an antiapoptotic mechanism.

Effect of Mild-Thiol Reducing Agents and ${\alpha}2,3$-Sialyltransferase Expression on Secretion and Sialylation of Recombinant EPO in CHO Cells

  • Chang, Kern Hee;Jeong, Yeon Tae;Kwak, Chan Yeong;Choi, One;Kim, Jung Hoe
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.699-706
    • /
    • 2013
  • We have previously reported that N-acetylcysteine (NAC) not only delayed apoptosis but also enhanced the production of recombinant erythropoietin (EPO) in Chinese hamster ovary (CHO) cell culture. To investigate the production enhancement mechanism, the effects of similar thiol-reducing agents were studied. Intriguingly, all mild reducing agents examined including mercaptoethanesulfonic acid (MESNA), thiolactic acid (TLA), and thioglycolate (TG) were shown to block apoptosis and increase EPO production. A pulse-chase study of EPO secretion revealed that all four thiol-reducing agents increased the EPO secretion rate; among them TLA showed the highest rate. In terms of product quality, the sialic acid content of the glycoprotein is one of the most important factors. It was reported that a number of glycoproteins produced by CHO cells often have incomplete sialylation, particularly under high-producing conditions. Human ${\alpha}2,3$-sialyltransferase (${\alpha}2,3$-ST) was introduced into EPO-producing CHO cells in order to compensate for the reduced sialylation during supplementation with NAC. When ${\alpha}2,3$-ST was expressed in the presence of NAC, reduced sialylation was restored and an even more sialylated EPO was produced. Thus, our study is significant in that it offers increased EPO production while still allowing the prevention of decreased sialylation of EPO.

Determinants of Erythropoietin Hyporesponsiveness in Management of Anemia in Hemodialysis Patients (혈액투석 환자의 빈혈관리에서 Erythropoietin 반응에 영향을 미치는 인자)

  • Shin, Seung-Hee;Ji, Eun-Hee;Lee, Young-Sook;Oh, Jung-Mi
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.122-130
    • /
    • 2011
  • Objective: Although recombinant human erythropoietin (rhEPO) has revolutionized the treatment of anemia in chronic kidney disease (CKD) receiving hemodialysis (HD) with no need of blood transfusion, some patients have a blunted or appear to be resistant to rhEPO. There is a controversy in the causes of rhEPO resistance in maintenance HD patients with anemia. This study is to examine current anemia treatment outcomes and the factors influencing the rhEPO responsiveness in HD patient with CKD. Methods: The clinical parameters or factors relating to erythrompoietin treatment outcomes and erythropoietin responsiveness were collected from the HD patients in two large dialysis centers for three months. The collected paramenters included serum iron, total iron biding capacity (TIBC), transferrin saturation rate, ferritin, albumin, intact PTH, C-reactive protein (CRP), nPCR and medications such as an angiotensin converting enzyme inhbitor, an angiotension II receptor blocker and an HMG-CoA reductase inhibitor (HMG-CoA RI). The data were analyzed to examine the degree of acheiveing the anemia treatment goal and factors relating to ERI. Results: Among total 111 patients, 42 (42.3%) and 47 (37.8%) patients achieved the target Hct and Hb based on the Health Insurance Review and Assessment Services (HIRA) reimbursement criteria. In the higher ERI group (upper quartile), the patients had higher CRP levels (0.5 mg/dl) (p=0.0096), and lower TIBC score (<$240{\mu}g/dl$) (p=0.0027), and less patients were taking HMG-CoA RI (p=0.0019). Male patients (p=0.0204), patients with high TIBC score ($R^2$=0.084, p=0.0021) and patients taking HMG-CoA RI (p=0.0052) required to administer less dose of rhEPO meaning higher erythropoietin responsiveness. Conclusion: Less than 50% of CKD patients were achieving the goals of anemia by erythropoietin administration in large hospitals in Korea even though the goals were lower than those of NKF-K/DOQI practice guideline. The factors influencing ERI were sex, TIBC and HMG-CoA RI administration status, and neither an ACEI nor an ARB did not influence ERI.

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation

  • Im, Jun Hyung;Yeo, In Jun;Hwang, Chul Ju;Lee, Kyung Sun;Hong, Jin Tae
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.152-162
    • /
    • 2020
  • Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.

Neuroprotective effects of erythropoietin against hypoxic injury via modulation of the mitogen-activated protein kinase pathway and apoptosis

  • Jeong, Ji Eun;Park, Jae Hyun;Kim, Chun Soo;Lee, Sang Lak;Chung, Hai Lee;Kim, Woo Taek;Lee, Eun Joo
    • Clinical and Experimental Pediatrics
    • /
    • v.60 no.6
    • /
    • pp.181-188
    • /
    • 2017
  • Purpose: Hypoxic-ischemic encephalopathy is a significant cause of neonatal morbidity and mortality. Erythropoietin (EPO) is emerging as a therapeutic candidate for neuroprotection. Therefore, this study was designed to determine the neuroprotective role of recombinant human EPO (rHuEPO) and the possible mechanisms by which mitogen-activated protein kinase (MAPK) signaling pathway including extracellular signal-regulated kinase (ERK1/2), JNK, and p38 MAPK is modulated in cultured cortical neuronal cells and astrocytes. Methods: Primary neuronal cells and astrocytes were prepared from cortices of ICR mouse embryos and divided into the normoxic, hypoxia (H), and hypoxia-pretreated with EPO (H+EPO) groups. The phosphorylation of MAPK pathway was quantified using western blot, and the apoptosis was assessed by caspase-3 measurement and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Results: All MAPK pathway signals were activated by hypoxia in the neuronal cells and astrocytes (P<0.05). In the neuronal cells, phosphorylation of ERK-1/-2 and apoptosis were significantly decreased in the H+EPO group at 15 hours after hypoxia (P<0.05). In the astrocytes, phosphorylation of ERK-1/-2, p38 MAPK, and apoptosis was reduced in the H+EPO group at 15 hours after hypoxia (P<0.05). Conclusion: Pretreatment with rHuEPO exerts neuroprotective effects against hypoxic injury reducing apoptosis by caspase-dependent mechanisms. Pathologic, persistent ERK activation after hypoxic injury may be attenuateed by pretreatment with EPO supporting that EPO may regulate apoptosis by affecting ERK pathways.

Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury (신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호)

  • Jang, Yoon-Jung;Seo, Eok-Su;Kim, Woo-Taek
    • Neonatal Medicine
    • /
    • v.16 no.2
    • /
    • pp.221-233
    • /
    • 2009
  • Purpose: Erythropoietin (EPO) has neuroprotective effects in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity. Current studies have demonstrated the neuroprotective effects of EPO, but limited data are available for the neonatal periods. Here in we investigated whether recombinant human EPO (rHuEPO) can protect the developing rat brain from HI injury via modulation of NMDA receptors. Methods: In an in vitro model, embryonic cortical neuronal cell cultures from Sprague-Dawley (SD) rats at 19-days gestation were established. The cultured cells were divided into five groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated (H+E1, H+ E10, and H+E100) groups. To estimate cell viability and growth, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was done. In an in vivo model, left carotid artery ligation was performed on 7-day-old SD rat pups. The animals were divided into six groups; normoxia control (NC), normoxia Sham-operated (NS), hypoxia-ischemia only (H), hypoxia-ischemia+vehicle (HV), hypoxia-ischemia+rHuEPO before a HI injury (HE-B), and hypoxia-ischemia+rHuEPO after a HI injury (HE-A). The morphologic changes following brain injuries were noted using hematoxylin and eosin (H/E) staining. Real-time PCR using primers of subunits of NMDA receptors (NR1, NR2A, NR2B, NR2C and NR2D) mRNA were performed. Results: Cell viability in the H group was decreased to less than 60% of that in the N group. In the H+E1 and H+E10 groups, cell viability was increased to >80% of the N group, but cell viability in the H+E100 group did not recover. The percentage of the left hemisphere area compared the to the right hemisphere area were 98.9% in the NC group, 99.1% in the NS group, 57.1% in the H group, 57.0% in the HV group, 87.6% in the HE-B group, and 91.6% in the HE-A group. Real-time PCR analysis of the expressions of subunits of NMDA receptors mRNAs in the in vitro and in vivo neonatal HI brain injuries generally revealed that the expression in the H group was decreased compared to the N group and the expressions in the rHuEPO-treated groups was increased compared to the H group. Conclusion: rHuEPO has neuroprotective property in perinatal HI brain injury via modulation of N-methyl-D-aspartate receptors.

Identification of HUGT1 as a Potential BiP Activator and a Cellular Target for Improvement of Recombinant Protein Production Using a cDNA Screening System

  • Ku, Sebastian Chih Yuan;Lwa, Teng Rhui;Giam, Maybelline;Yap, Miranda Gek Sim;Chao, Sheng-Hao
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.577-582
    • /
    • 2009
  • The development of a high-throughput functional genomic screening provides a novel and expeditious approach in identifying critical genes involved in specific biological processes. Here we describe a cell-based cDNA screening system to identify the transcription activators of BiP, an endoplasmic reticulum (ER) chaperone protein. BiP promoter contains the ER stress element which is commonly present in the genes involved in unfolded protein response (UPR) that regulates protein secretion in cells. Therefore, the positive regulators of BiP may also be utilized to improve the recombinant protein production through modulation of UPR. Four BiP activators, including human UDP-glucose:glycoprotein glucosyltransferase 1 (HUGT1), are identified by the cDNA screening. Overexpression of HUGT1 leads to a significant increase in the production of recombinant erythropoietin, interferon ${\gamma}$, and monoclonal antibody in HEK293 cells. Our results demonstrate that the cDNA screening for BiP activators may be effective to identify the novel BiP regulators and HUGT1 may serve as an ideal target gene for improving the recombinant protein production in mammalian cells.

Experience of a Bloodless Two-Jaw Surgery and Care in Jehovah's Witnesses with Anemia (빈혈이 있는 여호와의 증인 환자에서 무수혈 양악교정 수술)

  • Lee, Jung-Man;Seo, Kwang-Suk;Kim, Hyun-Jeong;Shin, Soon-Young
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.12 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • We report a case of 15 year-old Jehovah's Witness patient with mild anemia who underwent a successful orthognathic two-jaw surgery. Jehovah's Witness patients refuse transfusion of blood or blood products even in life threatening situations. The use of recombinant human erythropoietin and iron supplement increased hemoglobin during preoperative period. Intraoperatively, meticulous surgical hemostasis, acute normovolemic hemodilution and induced hypotension enabled the completion of the operation without the use of blood products.

Genotoxic evaluation of recombinant human erythropoietin (rHu-EPO) in shod-term assays. (인체 재조합 적혈구 조혈인자, rHu-EPO의 유전독성 평가)

  • 김형식;곽승준;천선아;임소영;안미영;김원배;김병문;안병옥;서동상
    • Environmental Mutagens and Carcinogens
    • /
    • v.16 no.2
    • /
    • pp.103-108
    • /
    • 1996
  • The mutagenic potential of rHu-EPO was evaluated using the short-term genotoxicity tests including Ames, chromosome aberration and micronuclei tests. In Salmonella typhimurium assay, rHu-EPO did not show any mutagenic response in the absence or presence of S9 mix with TA98, TA100, TA1535, and TA1537. In chromosome aberration test, rHu-EPO did not show any significant effect on Chinese Hamster Ovary(CHO) cells compared with control. In micronucleus test using male ICR mice, a dose-dependence increase in the frequency of micronucleuted polychromatic erythrocytes(MNPCEs) was observed in bone marrow cells treated with rHu-EPO. However, it was related to the secondary effect of rHu-EPO and the number of MNPCEs was equal to spontaneous frequency. These results indicate that rHu-EPO does not show any positive response in short-term genotoxicity assays.

  • PDF