Browse > Article
http://dx.doi.org/10.1007/s10059-009-0078-z

Identification of HUGT1 as a Potential BiP Activator and a Cellular Target for Improvement of Recombinant Protein Production Using a cDNA Screening System  

Ku, Sebastian Chih Yuan (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR))
Lwa, Teng Rhui (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR))
Giam, Maybelline (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR))
Yap, Miranda Gek Sim (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR))
Chao, Sheng-Hao (Expression Engineering Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR))
Abstract
The development of a high-throughput functional genomic screening provides a novel and expeditious approach in identifying critical genes involved in specific biological processes. Here we describe a cell-based cDNA screening system to identify the transcription activators of BiP, an endoplasmic reticulum (ER) chaperone protein. BiP promoter contains the ER stress element which is commonly present in the genes involved in unfolded protein response (UPR) that regulates protein secretion in cells. Therefore, the positive regulators of BiP may also be utilized to improve the recombinant protein production through modulation of UPR. Four BiP activators, including human UDP-glucose:glycoprotein glucosyltransferase 1 (HUGT1), are identified by the cDNA screening. Overexpression of HUGT1 leads to a significant increase in the production of recombinant erythropoietin, interferon ${\gamma}$, and monoclonal antibody in HEK293 cells. Our results demonstrate that the cDNA screening for BiP activators may be effective to identify the novel BiP regulators and HUGT1 may serve as an ideal target gene for improving the recombinant protein production in mammalian cells.
Keywords
HEK293; HUGT1; monoclonal antibody; recombinant protein production; unfolded protein response;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Borth, N., Mattanovich, D., Kunert, R., and Katinger, H. (2005). Effect of increased expression of protein disulfide isomerase and heavy chain binding protein on antibody secretion in a recombinant CHO cell line. Biotechnol. Prog. 21, 106-111   DOI   ScienceOn
2 Lee, J., Lau, J., Chong, G., and Chao, S.H. (2007). Cell-specific effects of human cytomegalovirus unique region on recombinant protein expression. Biotechnol. Lett. 29, 1797-1802   DOI   ScienceOn
3 Sorger, P.K., and Pelham, H.R. (1987). The glucose-regulated protein grp94 is related to heat shock protein hsp90. J. Mol. Biol. 194, 341-344   DOI   PUBMED
4 van Huizen, R., Martindale, J.L., Gorospe, M., and Holbrook, N.J. (2003). P58IPK, a novel endoplasmic reticulum stress-inducible protein and potential negative regulator of eIF2alpha signaling. J. Biol. Chem. 278, 15558-15564   DOI   ScienceOn
5 Yamamoto, K., Yoshida, H., Kokame, K., Kaufman, R.J., and Mori, K. (2004). Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J. Biochem. 136, 343-350
6 Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001a). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891   DOI   ScienceOn
7 Meissner, P., Pick, H., Kulangara, A., Chatellard, P., Friedrich, K., and Wurm, F.M. (2001). Transient gene expression: recombinant protein production with suspension-adapted HEK293-EBNA cells. Biotechnol. Bioeng. 75, 197-203   DOI   ScienceOn
8 Chusainow, J., Yang, Y.S., Yeo, J.H., Toh, P.C., Asvadi, P., Wong, N.S., and Yap, M.G. (2009). A study of monoclonal antibodyproducing CHO cell lines: What makes a stable high producer? Biotechnol. Bioeng. 102, 1182-1196   DOI   ScienceOn
9 Yoshida, H., Haze, K., Yanagi, H., Yura, T., and Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J. Biol. Chem. 273, 33741-33749   DOI   ScienceOn
10 Chanda, S.K., White, S., Orth, A.P., Reisdorph, R., Miraglia, L., Thomas, R.S., DeJesus, P., Mason, D.E., Huang, Q., Vega, R., et al. (2003). Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc. Natl. Acad. Sci. USA 100, 12153-12158   DOI   ScienceOn
11 Oyadomari, S., Yun, C., Fisher, E.A., Kreglinger, N., Kreibich, G., Oyadomari, M., Harding, H.P., Goodman, A.G., Harant, H., Garrison, J.L., et al. (2006). Cotranslocational degradation protects the stressed endoplasmic reticulum from protein overload. Cell 126, 727-739   DOI   ScienceOn
12 Ku, S.C., Ng, D.T., Yap, M.G., and Chao, S.H. (2008). Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Biotechnol. Bioeng. 99, 155-164   DOI   ScienceOn
13 Liu, J., Bang, A.G., Kintner, C., Orth, A.P., Chanda, S.K., Ding, S., and Schultz, P.G. (2005). Identification of the Wnt signaling activator leucine-rich repeat in Flightless interaction protein 2 by a genome-wide functional analysis. Proc. Natl. Acad. Sci. USA 102, 1927-1932   DOI   ScienceOn
14 Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2001b). Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6alpha and 6beta that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21, 1239-1248   DOI   ScienceOn
15 Wright, J.L., Jordan, M., and Wurm, F.M. (2003). Transfection of partially purified plasmid DNA for high level transient protein expression in HEK293-EBNA cells. J. Biotechnol. 102, 211-221   DOI   ScienceOn
16 Arnold, S.M., Fessler, L.I., Fessler, J.H., and Kaufman, R.J. (2000). Two homologues encoding human UDP-glucose:glycoprotein glucosyltransferase differ in mRNA expression and enzymatic activity. Biochemistry 39, 2149-2163   DOI   ScienceOn
17 Ungar, D., Oka, T., Brittle, E.E., Vasile, E., Lupashin, V.V., Chatterton, J.E., Heuser, J.E., Krieger, M., and Waters, M.G. (2002). Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol. 157, 405-415   DOI   ScienceOn
18 Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol. Cell. Biol. 20, 6755-6767   DOI   ScienceOn
19 Davis, R., Schooley, K., Rasmussen, B., Thomas, J., and Reddy, P. (2000). Effect of PDI overexpression on recombinant protein secretion in CHO cells. Biotechnol. Prog. 16, 736-743   DOI   ScienceOn
20 Huang, Q., Raya, A., DeJesus, P., Chao, S.H., Quon, K.C., Caldwell, J.S., Chanda, S.K., Izpisua-Belmonte, J.C., and Schultz, P.G. (2004). Identification of p53 regulators by genome-wide functional analysis. Proc. Natl. Acad. Sci. USA 101, 3456-3461   DOI   ScienceOn