Browse > Article

PEGylated Erythropoietin Protects against Brain Injury in the MCAO-Induced Stroke Model by Blocking NF-κB Activation  

Im, Jun Hyung (College of Pharmacy and Medical Research Center, Chungbuk National University)
Yeo, In Jun (College of Pharmacy and Medical Research Center, Chungbuk National University)
Hwang, Chul Ju (College of Pharmacy and Medical Research Center, Chungbuk National University)
Lee, Kyung Sun (R&D Center, Ts Corporation)
Hong, Jin Tae (College of Pharmacy and Medical Research Center, Chungbuk National University)
Publication Information
Biomolecules & Therapeutics / v.28, no.2, 2020 , pp. 152-162 More about this Journal
Cerebral ischemia exhibits a multiplicity of pathophysiological mechanisms. During ischemic stroke, the reactive oxygen species (ROS) concentration rises to a peak during reperfusion, possibly underlying neuronal death. Recombinant human erythropoietin (EPO) supplementation is one method of treating neurodegenerative disease by reducing the generation of ROS. We investigated the therapeutic effect of PEGylated EPO (P-EPO) on ischemic stroke. Mice were administered P-EPO (5,000 U/kg) via intravenous injection, and middle cerebral artery occlusion (MCAO) followed by reperfusion was performed to induce in vivo ischemic stroke. P-EPO ameliorated MCAO-induced neurological deficit and reduced behavioral disorder and the infarct area. Moreover, lipid peroxidation, expression of inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), and cytokine levels in blood were reduced by the P-EPO treatment. In addition, higher activation of nuclear factor kappa B (NF-κB) was found in the brain after MCAO, but NF-κB activation was reduced in the P-EPO-injected group. Treatment with the NF-κB inhibitor PS-1145 (5 mg/kg) abolished the P-EPO-induced reduction of infarct volume, neuronal death, neuroinflammation, and oxidative stress. Moreover, P-EPO was more effective than EPO (5,000 U/kg) and similar to a tissue plasminogen activator (10 mg/kg). An in vitro study revealed that P-EPO (25, 50, and 100 U/mL) treatment protected against rotenone (100 nM)-induced neuronal loss, neuroinflammation, oxidative stress, and NF-κB activity. These results indicate that the administration of P-EPO exerted neuroprotective effects on cerebral ischemia damage through anti-oxidant and anti-inflammatory properties by inhibiting NF-κB activation.
PEGylated erythropoietin; Nuclear factor kappa B; Reactive oxygen species; Stroke; Inflammation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Berrouschot, J., Stoll, A., Hogh, T. and Eschenfelder, C. C. (2016) Intravenous thrombolysis with recombinant tissue-type plasminogen activator in a stroke patient receiving dabigatran anticoagulant after antagonization with idarucizumab. Stroke 47, 1936-1938.   DOI
2 Liu, C., Weaver, J. and Liu, K. J. (2012) Rapid conditioning with oxygen oscillation: neuroprotection by intermittent normobaric hyperoxia after transient focal cerebral ischemia in rats. Stroke 43, 220-226.   DOI
3 Liu, S., Feng, X., Jin, R. and Li, G. (2018) Tissue plasminogen activator-based nanothrombolysis for ischemic stroke. Expert Opin. Drug Deliv. 15, 173-184.   DOI
4 Longa, E. Z., Weinstein, P. R., Carlson, S. and Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 84-91.   DOI
5 Marti, H. H. (2004) Erythropoietin and the hypoxic brain. J .Exp. Biol. 207, 3233-3242.   DOI
6 Masuda, S., Nagao, M., Takahata, K., Konishi, Y., Gallyas, F., Jr., Tabira, T. and Sasaki, R. (1993) Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J. Biol. Chem. 268, 11208-11216.   DOI
7 Mestriner, R. G., Miguel, P. M., Bagatini, P. B., Saur, L., Boisserand, L. S., Baptista, P. P., Xavier, L. L. and Netto, C. A. (2013) Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats. Behav. Brain Res. 244, 82-89.   DOI
8 Mrsic-Pelcic, J., Pilipovic, K., Pelcic, G., Vitezic, D. and Zupan, G. (2017) Decrease in oxidative stress parameters after post-ischaemic recombinant human erythropoietin administration in the hippocampus of rats exposed to focal cerebral ischaemia. Basic Clin. Pharmacol. Toxicol. 121, 453-464.   DOI
9 Nijboer, C. H., Heijnen, C. J., Groenendaal, F., May, M. J., van Bel, F. and Kavelaars, A. (2008) A dual role of the NF-kappaB pathway in neonatal hypoxic-ischemic brain damage. Stroke 39, 2578-2586.   DOI
10 Bonda, D. J., Wang, X., Perry, G., Nunomura, A., Tabaton, M., Zhu, X. and Smith, M. A. (2010) Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology 59, 290-294.   DOI
11 Bonifacio, E., Ziegler, A. G., Klingensmith, G., Schober, E., Bingley, P. J., Rottenkolber, M., Theil, A., Eugster, A., Puff, R., Peplow, C., Buettner, F., Lange, K., Hasford, J. and Achenbach, P.; Pre-POINT Study Group (2015) Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA 313, 1541-1549.   DOI
12 Brines, M., Grasso, G., Fiordaliso, F., Sfacteria, A., Ghezzi, P., Fratelli, M., Latini, R., Xie, Q. W., Smart, J., Su-Rick, C. J., Pobre, E., Diaz, D., Gomez, D., Hand, C., Coleman, T. and Cerami, A. (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc. Natl. Acad. Sci. U.S.A. 101, 14907-14912.   DOI
13 Campbell, S. J., Anthony, D. C., Oakley, F., Carlsen, H., Elsharkawy, A. M., Blomhoff, R. and Mann, D. A. (2008) Hepatic nuclear factor kappa B regulates neutrophil recruitment to the injured brain. J. Neuropathol. Exp. Neurol. 67, 223-230.   DOI
14 Cevik, B., Solmaz, V., Yigitturk, G., Cavusoglu, T., Peker, G. and Erbas, O. (2017) Neuroprotective effects of erythropoietin on Alzheimer's dementia model in rats. Adv. Clin. Exp. Med. 26, 23-29.   DOI
15 Chen, J., Yang, Z. and Zhang, X. (2015) Carbamylated erythropoietin: a prospective drug candidate for neuroprotection. Biochem. Insights 8, 25-29.
16 Ranjbaran, M., Kadkhodaee, M. and Seifi, B. (2017) Renal tissue proinflammatory gene expression is reduced by erythropoietin in rats subjected to hemorrhagic shock. J. Nephropathol. 6, 69-73.   DOI
17 Crack, P. J., Taylor, J. M., Ali, U., Mansell, A. and Hertzog, P. J. (2006) Potential contribution of NF-kappaB in neuronal cell death in the glutathione peroxidase-1 knockout mouse in response to ischemiareperfusion injury. Stroke 37, 1533-1538.   DOI
18 Pang, L., Zhang, N., Dong, N., Wang, D. W., Xu, D. H., Zhang, P. and Meng, X. W. (2016) Erythropoietin protects rat brain injury from carbon monoxide poisoning by inhibiting toll-like receptor 4/NF-kappa B-dependent inflammatory responses. Inflammation 39, 561-568.   DOI
19 Pasut, G. and Veronese, F. M. (2012) State of the art in PEGylation: the great versatility achieved after forty years of research. J. Control. Release 161, 461-472.   DOI
20 Qin, Y. Y., Li, M., Feng, X., Wang, J., Cao, L., Shen, X. K., Chen, J., Sun, M., Sheng, R., Han, F. and Qin, Z. H. (2017) Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic. Biol. Med. 104, 333-345.   DOI
21 Rocchetta, F., Solini, S., Mister, M., Mele, C., Cassis, P., Noris, M., Remuzzi, G. and Aiello, S. (2011) Erythropoietin enhances immunostimulatory properties of immature dendritic cells. Clin. Exp. Immunol. 165, 202-210.   DOI
22 Sharawy, N., Rashed, L. and Youakim, M. F. (2015) Evaluation of multineuroprotective effects of erythropoietin using cisplatin induced peripheral neurotoxicity model. Exp. Toxicol. Pathol. 67, 315-322.   DOI
23 Zhu, J., Jiang, Y., Wu, L., Lu, T., Xu, G. and Liu, X. (2012) Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 202, 342-351.   DOI
24 Simmons, L. J., Surles-Zeigler, M. C., Li, Y., Ford, G. D., Newman, G. D. and Ford, B. D. (2016) Regulation of inflammatory responses by neuregulin-1 in brain ischemia and microglial cells in vitro involves the NF-kappa B pathway. J. Neuroinflammation 13, 237.   DOI
25 Subiros, N., Del Barco, D. G. and Coro-Antich, R. M. (2012) Erythropoietin: still on the neuroprotection road. Ther. Adv. Neurol. Disord. 5, 161-173.   DOI
26 Zamani, M., Katebi, M., Mehdizadeh, M., Kafami, L. and Soleimani, M. (2013) Combination therapy with A1 receptor agonist and vitamin C improved working memory in a mouse model of global ischemiareperfusion. Basic Clin. Neurosci. 4, 111-116.
27 Zhang, R. Q., Li, D. Y., Xu, T. D., Zhu, S. S., Pan, H. J., Fang, F., Wu, X. and Sun, H. (2017a) Antioxidative effect of luteolin pretreatment on simulated ischemia/reperfusion injury in cardiomyocyte and perfused rat heart. Chin. J. Integr. Med. 23, 518-527.   DOI
28 Zhang, Y., Yan, Y., Cao, Y., Yang, Y., Zhao, Q., Jing, R., Hu, J. and Bao, J. (2017b) Potential therapeutic and protective effect of curcumin against stroke in the male albino stroke-induced model rats. Life Sci. 183, 45-49.   DOI
29 Duckworth, E. A., Butler, T., Collier, L., Collier, S. and Pennypacker, K. R. (2006) NF-kappaB protects neurons from ischemic injury after middle cerebral artery occlusion in mice. Brain Res. 1088, 167-175.   DOI
30 Digicaylioglu, M., Bichet, S., Marti, H. H., Wenger, R. H., Rivas, L. A., Bauer, C. and Gassmann, M. (1995) Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proc. Natl. Acad. Sci. U.S.A. 92, 3717-3720.   DOI
31 Dumont, M. and Beal, M. F. (2011) Neuroprotective strategies involving ROS in Alzheimer disease. Free Radic. Biol. Med. 51, 1014-1026.   DOI
32 Wang, T., Zhai, L., Zhang, H., Zhao, L. and Guo, Y. (2015) Picroside II inhibits the MEK-ERK1/2-COX2 signal pathway to prevent cerebral ischemic injury in rats. J. Mol. Neurosci. 57, 335-351.   DOI
33 van Rijt, W. G., van Goor, H., Ploeg, R. J. and Leuvenink, H. G. (2014) Erythropoietin-mediated protection in kidney transplantation: nonerythropoietic EPO derivatives improve function without increasing risk of cardiovascular events. Transpl. Int. 27, 241-248.   DOI
34 Wang, F. J., Wang, S. X., Chai, L. J., Zhang, Y., Guo, H. and Hu, L. M. (2018) Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol. Sin. 39, 998-1011.   DOI
35 Wang, R., Li, J., Duan, Y., Tao, Z., Zhao, H. and Luo, Y. (2017) Effects of erythropoietin on gliogenesis during cerebral ischemic/reperfusion recovery in adult mice. Aging Dis. 8, 410-419.   DOI
36 Wang, T. F., Lei, Z., Li, Y. X., Wang, Y. S., Wang, J., Wang, S. J., Hao, Y. J., Zhou, R., Jin, S. J., Du, J., Li, J., Sun, T. and Yu, J. Q. (2013) Oxysophoridine protects against focal cerebral ischemic injury by inhibiting oxidative stress and apoptosis in mice. Neurochem. Res. 38, 2408-2417.   DOI
37 Erbayraktar, S., Yilmaz, O., Gokmen, N. and Brines, M. (2003) Erythropoietin is a multifunctional tissue-protective cytokine. Curr. Hematol. Rep. 2, 465-470.
38 Yazihan, N., Uzuner, K., Salman, B., Vural, M., Koken, T. and Arslantas, A. (2008) Erythropoietin improves oxidative stress following spinal cord trauma in rats. Injury 39, 1408-1413.   DOI
39 Yoo, S. J., Cho, B., Lee, D., Son, G., Lee, Y. B., Soo Han, H., Kim, E., Moon, C. and Moon, C. (2017) The erythropoietin-derived peptide MK-X and erythropoietin have neuroprotective effects against ischemic brain damage. Cell Death Dis. 8, e3003.   DOI
40 Erbas, O., Cinar, B. P., Solmaz, V., Cavusoglu, T. and Ates, U. (2015) The neuroprotective effect of erythropoietin on experimental Parkinson model in rats. Neuropeptides 49, 1-5.   DOI
41 Gong, G., Xiang, L., Yuan, L., Hu, L., Wu, W., Cai, L., Yin, L. and Dong, H. (2014) Protective effect of glycyrrhizin, a direct HMGB1 inhibitor, on focal cerebral ischemia/reperfusion-induced inflammation, oxidative stress, and apoptosis in rats. PLoS ONE 9, e89450.   DOI
42 Gui, D., Li, Y., Chen, X., Gao, D., Yang, Y. and Li, X. (2015) HIF1 signaling pathway involving iNOS, COX2 and caspase9 mediates the neuroprotection provided by erythropoietin in the retina of chronic ocular hypertension rats. Mol. Med. Rep. 11, 1490-1496.   DOI
43 Gorio, A., Gokmen, N., Erbayraktar, S., Yilmaz, O., Madaschi, L., Cichetti, C., Di Giulio, A. M., Vardar, E., Cerami, A. and Brines, M. (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc. Natl. Acad. Sci. U.S.A. 99, 9450-9455.   DOI
44 Gorio, A., Madaschi, L., Di Stefano, B., Carelli, S., Di Giulio, A. M., De Biasi, S., Coleman, T., Cerami, A. and Brines, M. (2005) Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc. Natl. Acad. Sci. U.S.A. 102, 16379-16384.   DOI
45 Grasso, G., Sfacteria, A., Cerami, A. and Brines, M. (2004) Erythropoietin as a tissue-protective cytokine in brain injury: what do we know and where do we go? Neuroscientist 10, 93-98.   DOI
46 Ham, P. B., 3rd and Raju, R. (2017) Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog. Neurobiol. 157, 92-116.   DOI
47 Jelkmann, W. (2011) Regulation of erythropoietin production. J. Physiol. 589, 1251-1258.   DOI
48 Heikal, L., Ghezzi, P., Mengozzi, M., Stelmaszczuk, B., Feelisch, M. and Ferns, G. A. (2016) Erythropoietin and a nonerythropoietic peptide analog promote aortic endothelial cell repair under hypoxic conditions: role of nitric oxide. Hypoxia 4, 121-133.   DOI
49 Hosoo, H., Marushima, A., Nagasaki, Y., Hirayama, A., Ito, H., Puentes, S., Mujagic, A., Tsurushima, H., Tsuruta, W., Suzuki, K., Matsui, H., Matsumaru, Y., Yamamoto, T. and Matsumura, A. (2017) Neurovascular unit protection from cerebral ischemia-reperfusion injury by radical-containing nanoparticles in mice. Stroke 48, 2238-2247.   DOI
50 Hu, H., Zhu, X., Lin, R., Li, Z. and Chen, L. (2016) Suppressive effects of Gua Lou Gui Zhi decoction on MCAO-induced NO and PGE2 production are dependent on the MAPK and NF-kappaB signaling pathways. Mol. Med. Rep. 14, 5141-5147.   DOI
51 Jickling, G. C., Zhan, X., Stamova, B., Ander, B. P., Tian, Y., Liu, D., Sison, S. M., Verro, P., Johnston, S. C. and Sharp, F. R. (2012) Ischemic transient neurological events identified by immune response to cerebral ischemia. Stroke 43, 1006-1012.   DOI
52 Kim, S. M., Song, J., Kim, S., Han, C., Park, M. H., Koh, Y., Jo, S. A. and Kim, Y. Y. (2011) Identification of peripheral inflammatory markers between normal control and Alzheimer's disease. BMC Neurol. 11, 51.   DOI
53 Kraft, A. D. and Harry, G. J. (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int. J. Environ. Res. Public Health 8, 2980-3018.   DOI
54 Bailey, D. M., Lundby, C., Berg, R. M., Taudorf, S., Rahmouni, H., Gutowski, M., Mulholland, C. W., Sullivan, J. L., Swenson, E. R., McEneny, J., Young, I. S., Pedersen, B. K., Moller, K., Pietri, S. and Culcasi, M. (2014) On the antioxidant properties of erythropoietin and its association with the oxidative-nitrosative stress response to hypoxia in humans. Acta Physiol. (Oxf.) 212, 175-187.   DOI
55 Li, Y. P., Yang, G. J., Jin, L., Yang, H. M., Chen, J., Chai, G. S. and Wang, L. (2015) Erythropoietin attenuates Alzheimer-like memory impairments and pathological changes induced by amyloid beta42 in mice. Brain Res. 1618, 159-167.   DOI
56 Abed, H. S., Al-Ghobashy, M. A., Fathalla, F. A. and Salem, M. Y. (2017) Evaluation of the combined effects of pegylation and glycosylation on the stability of erythropoietin using a stability-indicating SE-HPLC. Biologicals 50, 129-136.   DOI
57 Abramov, A. Y., Scorziello, A. and Duchen, M. R. (2007) Three distinct mechanisms generate oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation. J. Neurosci. 27, 1129-1138.   DOI
58 Ahmadiasl, N., Banaei, S. and Alihemmati, A. (2013) Combination antioxidant effect of erythropoietin and melatonin on renal ischemiareperfusion injury in rats. Iran. J. Basic Med. Sci. 16, 1209-1216.
59 Allen, C. L. and Bayraktutan, U. (2009) Oxidative stress and its role in the pathogenesis of ischaemic stroke. Int. J. Stroke 4, 461-470.   DOI
60 Bennett, D. A., Krishnamurthi, R. V., Barker-Collo, S., Forouzanfar, M. H., Naghavi, M., Connor, M., Lawes, C. M., Moran, A. E., Anderson, L. M. and Roth, G. A. (2014) The global burden of ischemic stroke: findings of the GBD 2010 study. Global Heart 9, 107-112.   DOI