Neuroprotection of Recombinant Human Erythropoietin Via Modulation of N-methyl-D-aspartate Receptors in Neonatal Rats with Hypoxic-ischemic Brain Injury

신생 백서의 저산소성 허혈성 뇌손상에서 NMDA receptor 조절을 통한 유전자 재조합 인 에리스로포이에틴의 신경보호

  • Jang, Yoon-Jung (Department of Pediatrics, School of Medicine, Catholic University of Daegu) ;
  • Seo, Eok-Su (Dongguk University College of Medicine) ;
  • Kim, Woo-Taek (Department of Pediatrics, School of Medicine, Catholic University of Daegu)
  • 장윤정 (대구가톨릭대학교 의과대학 소아과학교실) ;
  • 서억수 (동국대학교 의과대학 안과학교실) ;
  • 김우택 (대구가톨릭대학교 의과대학 소아과학교실)
  • Published : 2009.11.30

Abstract

Purpose: Erythropoietin (EPO) has neuroprotective effects in many animal models of brain injury, including hypoxic-ischemic (HI) encephalopathy, trauma, and excitotoxicity. Current studies have demonstrated the neuroprotective effects of EPO, but limited data are available for the neonatal periods. Here in we investigated whether recombinant human EPO (rHuEPO) can protect the developing rat brain from HI injury via modulation of NMDA receptors. Methods: In an in vitro model, embryonic cortical neuronal cell cultures from Sprague-Dawley (SD) rats at 19-days gestation were established. The cultured cells were divided into five groups: normoxia (N), hypoxia (H), and 1, 10, and 100 IU/mL rHuEPO-treated (H+E1, H+ E10, and H+E100) groups. To estimate cell viability and growth, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay was done. In an in vivo model, left carotid artery ligation was performed on 7-day-old SD rat pups. The animals were divided into six groups; normoxia control (NC), normoxia Sham-operated (NS), hypoxia-ischemia only (H), hypoxia-ischemia+vehicle (HV), hypoxia-ischemia+rHuEPO before a HI injury (HE-B), and hypoxia-ischemia+rHuEPO after a HI injury (HE-A). The morphologic changes following brain injuries were noted using hematoxylin and eosin (H/E) staining. Real-time PCR using primers of subunits of NMDA receptors (NR1, NR2A, NR2B, NR2C and NR2D) mRNA were performed. Results: Cell viability in the H group was decreased to less than 60% of that in the N group. In the H+E1 and H+E10 groups, cell viability was increased to >80% of the N group, but cell viability in the H+E100 group did not recover. The percentage of the left hemisphere area compared the to the right hemisphere area were 98.9% in the NC group, 99.1% in the NS group, 57.1% in the H group, 57.0% in the HV group, 87.6% in the HE-B group, and 91.6% in the HE-A group. Real-time PCR analysis of the expressions of subunits of NMDA receptors mRNAs in the in vitro and in vivo neonatal HI brain injuries generally revealed that the expression in the H group was decreased compared to the N group and the expressions in the rHuEPO-treated groups was increased compared to the H group. Conclusion: rHuEPO has neuroprotective property in perinatal HI brain injury via modulation of N-methyl-D-aspartate receptors.

목 적 : 신장에서 분비되어 적혈구를 생산하는 빈혈제로 알려진 에리스로포이에틴(Erythropoietin, EPO)은 단순히 피를 만드는 조혈기능 뿐 아니라 최근 신경계 보호 및 신경강화 효과가 있다고 발표되고 있지만 주산기 가사로 인한 저산소성 허혈성 뇌병증의 치료제로서 그 기전이 명확하게 밝혀지지 않았다. 저자들은 유전자 재조합 인 에리스로포이에틴(recombinant Human EPO, rHuEPO)을 이용하여 주산기 저산소성 허혈성 뇌병증의 치료제로서 N-methyl-D-aspartate (NMDA) 수용체와 관련된 흥분성 독성작용을 통한 조절 등 그 기전을 알아보고자 하였다. 방 법 : 재태기간 19일된 태아 백서의 대뇌피질 세포를 배양하여 정상산소군은 5% $CO_2$ 배양기(95% air, 5% $CO_2$)에 두었고, 저산소군과 농도별 뇌손상 전 rHuEPO 투여군(1, 10, 100 IU/mL)은 1% $O_2$ 배양기(94% $N_2$, 5% $CO_2$)에서 6시간 동안 뇌세포손상을 유도하였다. 세포성장과 생존력을 평가하기 위해 MTT 실험을 시행하였다. 동물 모델에서는 생후 7일된 신생백서의 좌측 총 경동맥을 결찰한 후 6개 군; 정상산소군, sham-operated군, 저산소-허헐성군, 저산소-허헐성+vehicle군, 저산소-허헐성 손상 전 rHuEPO 투여군, 저산소-허헐성 손상 후 rHuEPO 투여군으로 나누었고, 저산소-허헐성 손상은 특별히 제작한 통속에서 2시간 동안 8% $O_2$ (8% $O_2$, 92% $N_2$)에 노출시켰다. rHuEPO은 뇌손상 전후 30분에 체중 kg당 1000 IU를 투여하였고, 저산소-허헐성 손상 후 7일째 조직을 실험하였다. 적출한 조직으로 H&E 염색을 하여 뇌손상을 형태학적으로 관찰하였다. 세포배양 및 동물실험에서 NMDA 수용체의 아단위인 NR1, NR2A, NR2B, NR2C, NR2D를 이용하여 실시간 중합효소연쇄반응을 실시하였다. 결 과 : 저산소군에서 세포 생존률은 정상산소군보다 60% 감소하였으며, rHuEPO 투여군(1, 10 IU/mL)은 80% 증가하였다. rHuEPO 투여군(100 IU/mL)은 회복되지 않았다. 우측 반구 대비 좌측 반구의 범위는 정상산소군 98.9%, sham-operated군 99.1%, 저산소-허헐성군 57.1%, 저산소-허헐성+vehicle군 57.0%, 저산소-허헐성 손상 전 rHuEPO 투여군 87.6%, 저산소-허헐성 손상 후 rHuEPO 투여군 91.6%으로 나타났다. NMDA 수용체의 아단위 생체외 실험에서 실시간 중합효소연쇄반응의 결과 NMDA 수용체 아단위 mRNA의 발현은 rHuEPO 투여군에서 저산소군보다 모두 증가하였다. 결 론 : 본 연구에서 rHuEPO은 흥분성 독성작용과 관련되어 NMDA 수용체를 조절하면서 저산소성 허헐성 뇌손상을 보호하는 것을 알 수 있었다.

Keywords

References

  1. Juul S. Recombinant erythropoietin as a neuroprotective treatment: in vitro and in vivo models. Clin Perinatol 2004;31:129-42. https://doi.org/10.1016/j.clp.2004.03.004
  2. Siren AL, Fratelli M, Brines M, Goemans C, Casagrande S, Lewczuk P, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 2001;98:4044-9. https://doi.org/10.1073/pnas.051606598
  3. Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Hehn V, et al. Erythropoietin gene expression in human monkey and murine brain. Eur J Neurosci 1996;8:666-76. https://doi.org/10.1111/j.1460-9568.1996.tb01252.x
  4. Wen TC, Sadamoto Y, Tanaka J. Zhu PX, Nakata K, Ma YJ, et al. Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by upregulating Bcl-xL expression. J Neurosci Res 2002;67:795-803. https://doi.org/10.1002/jnr.10166
  5. Koshimura K, Murakami Y, Sohmiya M, Tanaka J, Kato Y. Effects of erythropoietin on neuronal activity. J Neurochem 1999;72:2565-72. https://doi.org/10.1046/j.1471-4159.1999.0722565.x
  6. Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, et al. Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol 2000:401:349-56. https://doi.org/10.1016/S0014-2999(00)00466-0
  7. Kawakami M, Sekiguchi M, Sato K, Kozaki S, Takahashi M. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J BioI Chem 2001;276:39469-75. https://doi.org/10.1074/jbc.M105832200
  8. Ghezzi P, Brines M. Erythropoietin as an antiapoptotic, tissue-protective cytokine. Cell Death Differ 2004;11:S37-44. https://doi.org/10.1038/sj.cdd.4401450
  9. Chakraborty M, Ghosal J, Biswas T, Datta AG. Effect of erythropoietin on membrane lipid peroxidation, superoxide dismutase, catalase and glutathione peroxidase of rat RBC. Biochem Med Metab BioI 1988:40:8-18. https://doi.org/10.1016/0885-4505(88)90099-0
  10. Atlason PT, Garside ML, Meddows E, Whiting P, McIlhinney RA. N-Methyl-D-aspartate (NMDA) receptor subunit NRI forms the substrate for oligomeric assembly of the NMDA receptor. J BioI Chem 2007;282:25299-307. https://doi.org/10.1074/jbc.M702778200
  11. Kuryatov A, Laube B, Betz H, Kuhse J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 1994;12:1291-300. https://doi.org/10.1016/0896-6273(94)90445-6
  12. Laube B, Hirai H, Sturgess M, Betz H, Kuhse J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 1997;18:493-503. https://doi.org/10.1016/S0896-6273(00)81249-0
  13. Perez-Otano I, Schulteis CT, Contractor A, Lipton SA, Trimmer JS, Sucher NJ, et al. Assembly with the NRI subunit is required for surface expression of NR3A-containing NMDA receptors. J Neurosci 2001;21:1228-37.
  14. Dzietko M, Felderhoff-Mueser U, Sifringer M, Krutz B, Bittigau P, Thor F, et al. Erythropoietin protects the developing brain against N-methyl-d-aspartate receptor antagonist neurotoxicity. Neurobiol Dis 2004;15:177-87. https://doi.org/10.1016/j.nbd.2003.10.006
  15. Sinor AD, Greenberg DA. Erythropoietin protects cultured cortical neurons, but not astroglia, from hypoxia and AMPA toxicity. Neurosci Lett 2000;290:213-5. https://doi.org/10.1016/S0304-3940(00)01361-6
  16. Brewer GJ. Isolation and culture of adult rat hippocampal neurons. J Neurosci Meth 1997;71:143-55. https://doi.org/10.1016/S0165-0270(96)00136-7
  17. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  18. Rice JE 3rd, Vannucci RC, Brierley JB. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 1981;9:131-41. https://doi.org/10.1002/ana.410090206
  19. Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J. Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke 2007;38:2795-803. https://doi.org/10.1161/STROKEAHA.107.483008
  20. Vannucci RC, Perlman JM. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1997;100:1004-14. https://doi.org/10.1542/peds.100.6.1004
  21. Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 2001;7:56-64. https://doi.org/10.1002/1098-2779(200102)7:1<56::AID-MRDD1008>3.0.CO;2-A
  22. Anderson P, Doyle LW. Victorian Infant Collaborative Study Group Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 2003;289:3264-72. https://doi.org/10.1001/jama.289.24.3264
  23. Martin LJ. Mechanism of brain damage in animal models of hypoxia-ischemia in newborns. In: Stevenson, D.K., Benitz, W.E., Sunshine, P. (Eds), Fetal and Neonatal Brain Injury: Mechamism, management, and the Risks of Practice. Oxford University Press 2003;2:30-57.
  24. Ashwal S, Pearce WJ. Animal models of neonatal stroke. Curr Opin Pediatr 2001;13:506-16. https://doi.org/10.1097/00008480-200112000-00003
  25. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 1992;72:449-89.
  26. Marti HH, Bernaudin M, Petit E, Bauer C. Neuro-protection and angiogenesis: dual role of erythropoietin in brain ischemia. News Physiol. Sci 2000;15:225-9.
  27. Spandou E, Soubasi V, Papoutsopoulou S, Karkavelas G, Simeonidou C, Kaiki-Astara A, et al. Erythropoietin prevents hypoxia/ischemia-induced DNA fragmentation in an experimental model of perinatal asphyxia. Neurosci Lett 2004;366:24-8. https://doi.org/10.1016/j.neulet.2004.05.032
  28. Ruscher K, Freyer D, Karsch M, Isaev N, Megow D, Sawitzki B, et al. Erythropoietin is a paracrine mediator of ischemic tolerance in the brain, eviidence from an in vitro model. J Neurosci 2002;22:10291-301.
  29. Grimm C, Wenzel A, Stanescu D, Samardzija M, Hotop S, Groszer M, et al. Constitutive overex-pression of human erythropoietin protects the mouse retina against induced but not inherited retinal degeneration. J Neurosci 2004;24:5651-8. https://doi.org/10.1523/JNEUROSCI.1288-04.2004
  30. Spandou E, Papadopoulou Z, Soubasi V, Karkavelas G, Simeonidou C, Pazaiti A, et al. Erythropoietin prevents long-term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats. Brain Res 2005;1045:22-30. https://doi.org/10.1016/j.brainres.2005.03.013
  31. Kim HM, Choe BH, Kwon SH, Shon YK. The effect of erythropoietin in neonatal rat model of hypoxic-ischemic brain injury. Korean J Pediatr 2009;52:105-10. https://doi.org/10.3345/kjp.2009.52.1.105
  32. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp 2003;198:971-5. https://doi.org/10.1084/jem.20021067
  33. Naito S, Ueda T. Adenosine triphosphate-dependent uptake of glutamate into protein I-associated synaptic vesicles. J BioI Chem 1983;258:696-9.
  34. Dienel GA, Hertz L. Astrocytic contributions to bioenergetics of cerebral ischemia. Glia 2005;50:362-88. https://doi.org/10.1002/glia.20157
  35. Hestrin S. Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse. Nature 1992;357:686-9. https://doi.org/10.1038/357686a0
  36. Wu G, Malinow R, Cline HT. Maturation of a central glutamatergic synapse. Science 1996;274:972-6. https://doi.org/10.1126/science.274.5289.972
  37. Hwang JY, Kim YH, Ahn YH, Wie MB, Koh JY. N-Methyl-D-aspartate receptor blockade induces neuronal apoptosis in cortical culture. Exp Neurol 1999;159:124-30. https://doi.org/10.1006/exnr.1999.7126
  38. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J, Dikranian K, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999;283:70-4. https://doi.org/10.1126/science.283.5398.70
  39. Kim SS, Lee KH, Sung DK, Shim JW, Kim MJ, Jeon GW, et al. Erythropoietin attenuates brain injury, subventricular zone expansion, and sensorimotor deficits in hypoxic-ischemic neonatal rats. J Korean Med Sci 2008;23:484-91. https://doi.org/10.3346/jkms.2008.23.3.484
  40. Yang SH, Shin JY, Cha SH, Park HJ, Lee KH, Lee GH, et al. The Expression of Isoforms of Nitric Oxide Synthase (NOS) and Subunits of N-methyl-D-aspartate (NMDA) Receptor according to Administration of Mycophenolic Acid before or after Perinatal Hypoxic Ischemic Brain Injury. J Korean Soc Neonatol 2007;14:1-10.