• Title/Summary/Keyword: recombinant bacteria

Search Result 205, Processing Time 0.024 seconds

Antibody Engineering

  • Hong, Hyo-Jeong;Kim, Sun-Taek
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.3
    • /
    • pp.150-154
    • /
    • 2002
  • Monoclonal antibodies (Mabs) have been used as diagnostic and analytical reagents since hybridoma technology was invented in 1975. In recent years, antibodies have become increasingly accepted as therapeutics for human diseases, particularly for cancer, viral infection and autoimmune disorders. An indication of the emerging significance of antibody-based therapeutics is that over a third of the proteins currently undergoing clinical trials in the United States are antibodies. Until the late 1980's, antibody technology relied primarily on animal immunization and the expression of engineered antibodies. However, the development of methods for the expression of antibody fragments in bacteria and powerful techniques for screening combinatorial libraries, together with the accumulating structure-function data base of antibodies, have opened unlimited opportunities for the engineering of antibodies with tailor-made properties for specific applications. Antibodies of low immunogenicity, suitable for human therapy and in vivo diagnosis, can now be developed with relative ease. Here, antibody structure-function and antibody engineering technologies are described.

High Production of Thermostable Beta-galactosidase of Bacillus stearothemophilus in mesophiles

  • Okada, Hirosuke;Hirata, Haruhisa;Negoro, Seiji
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.509.1-509
    • /
    • 1986
  • Recent advances in recombinant DNA techniques have provided a tool for breeding of microorganisms of hyper production. Enzyme production by cloned microorganism has some advantages. They are ⅰ) Enzymes can be produced by a microorganism easily cultured ⅱ) Hyper production. ⅲ) In some cases, such as thermophilic enzyme gene is cloned in a mesophilic bacteria, the enzyme purification procedure can be simplified. One example, production of thermophilic ${\beta}$-galactosidase in B. subtilis will be presented. Bacillus stearothermophilus IAM 11001 produced three ${\beta}$-galactosidases, ${\beta}$-galactosidase I, II and III (${\beta}$-gal-I, II and III). By connecting restriction fragments of the chromosomal DNA to plasmid vector, followed by transformation of Escherichia coli, two ${\beta}$-galactosidase genes (bgaA and bgaB) located close to each other on the chromosome were cloned.

  • PDF

Genotoxicity Assay Using Chromosomally-Integrated Bacterial recA::Lux

  • Min, Ji-Ho;Gu, Man-Bock
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.99-103
    • /
    • 2003
  • An Escherichia coli strain containing the recA promoter that fused to the luxCDABE operon originating from Photorhabdus luminescens was shown to respond sensitively to genotoxic stresses. Two different recombinant bacteria, one (DPDI 657) harboring a plasmid with the recA promoter that fused to the luxCDABE operon, and the other (DPD1710) containing a chromosomally-integrated recA promoter that fused with luxCDABE, were compared and it was found that the sensitivity of 'the two strains was significantly different in terms of their bioluminescent level, response time, and the minimum detectable concentration of a chemical causing DNA damaging stress. DPDI 710, with a chromosomally-integrated single copy, generally led to lower basal luminescence levels, faster responses, increased response ratios, and an enhanced sensitivity to mutagens, when compared to DPD 1657 with a multi-copy plasmid.

Lactobacillus casei YIT 9018의 Shuttle Vector 개발을 위한 분자유전학적 연구

  • Yoo, Min;Nam, Jin-Sik;Kwon, Oh-Sik;Baek, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.5
    • /
    • pp.464-467
    • /
    • 1997
  • A shuttle vector, pSHvec, was constructed for Lactobacillus casei (L. casei) YIT 9018 and JM1O9 by recombinant DNA technology. This vector contained the $\beta$-lactamase II gene from Bacillus cereus as a selection marker and replication origins for both Gram(+) and Gram(-) strains. It could transform the wild type L. casei YIT 9018 as well as E. coli JM109 and transformed cells were selected based on antibiotics resistance. The ability of L. casei YIT 9018 for curd formation in 11% skim milk was maintained even after transformation with pSHvec. The vector was stable as long as antibiotics were added to the medium. These results could contribute to the study of lactic acid bacteria for the industrial purpose at a genetic level.

  • PDF

Effect of Nitric Oxide on ADP-ribose Pyrophosphatase Activity

  • Kim, Jong-Hyun
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • Background: ADP-ribosyl pyrophosphatases (ADPRase) has been known to catalyze the hydrolysis of ADP-ribose to ribose-5-phosphate and AMP. The role of ADPRase has been suggested to sanitize the cell by removing potentially toxic ADP-ribose. In this study, we examined the effect of nitric oxide on ADPRase activity in macrophages. Methods: ADPRase activity was measured in NO-inducing J774 cells. For in vitro experiments, recombinant human ADPRase was prepared in bacteria. Results: ADPRase activity was increased by the treatment of exogenous NO generating reagent, sodium nitroprusside (SNP), in J774 cells. The increased ADPRase activity was mediated by the post-translational modification, likely to cause cADP-ribosylation via nitrosylation of cysteine residue on the enzyme. The stimulation with endogeneous NO inducers, $TNF-{\alpha}/IFN-{\gamma}$, also increased ADPRase activity through NO synthesis. Futhermore, ADPRase activity may be mediated by the post-translational modification of ADPRase, ADP-ribosylation. Conclusion: These results indicate that NO synthesized by macrophage activation plays a critical role in the increase in ADPRase activity following ADP-ribose metabolism.

Biotechnology for the Production of Threonine Production (Threonine의 생물공학적 생산)

  • Kim, Kyoung-Ja
    • YAKHAK HOEJI
    • /
    • v.34 no.6
    • /
    • pp.447-456
    • /
    • 1990
  • Various methods are available for the production of L-threonine. The microbial production of L-threonine has been achieved by breeding L-threonine analog-resistant auxotrophic mutants of various bacteria. The enzymatic production of L-threonine has been demonstrated by use of threonine metabolic enzymes such as threonine deaminase, threonine aldolase, or threonine dehydrogenase complex. Threonine synthesis from glycine and ethanol seems to be catalyzed by the enzymes Methanol dehydrogenase(MDH) and Serine hydroxymethyltransferase(SHMT), which was also found to catalyze the aldol condensation of glycine with acetaldehyde. The improved production of L-threonine has been achieved by amplifying the genes for the L-threonine biosynthetic enzymes using recombinant DNA techniques.

  • PDF

Multi-Channel Two-Stage 시스템을 이용한 수질 독성 모니터링의 지표 확립 및 모사

  • Kim, Byeong-Chan;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.715-718
    • /
    • 2000
  • The character of a recombinant bioluminescent bacteria's light emission enables us to monitor toxicity in water, soil and air. In this study, various bioluminescent responses to water samples containing toxic chemicals, such as phenol and mitomycin C, were obtained and analysed through the use of a multi-channel two-stage minibioreactor system. The bioluminescent pattern from each channel can be used as a standard for identifying the degree of toxicity in field samples. When various concentrations of toxic chemicals were injected in a step manner, different bioluminescent patterns were obtained. Also this system showed variation in its bioluminescent pattern as the injection manner was changed, i.e. using a modified version of the bell-curve type injection. In conclusion, the toxicity was shown to be related with the bioluminescent response when using these standard bioluminescent patterns. Comparing this standard with a bioluminescent response from a field sample, we can estimate the degree of which the sample is toxic.

  • PDF

Cloning and expression of cellulase genes from Erwinia carotovora in E. coli (Erwinia carotovora 유래의 cellulase 유전자의 클로닝 및 대장균에서의 발현)

  • Kim, Se-Don;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.121-125
    • /
    • 2009
  • New cellulase genes, named as CelV2 and CelN1, respectively, were isolated from Erwinia carotovora ATCC15713 and expressed in E. coli. The CelV2 and CelN1 gene were PCR amplified with degenerated primers and PCR products were sequenced and expressed in E. coli. Two new cellulase genes showed 97% homologies with previously reported Erwinia cellulase genes. The recombinant cellulase were purified with Ni-NTA column chromatography and its enzymatic properties were characterized. The optimum temperature of two enzymes were about $50^{\circ}C$ degree and optimum pH were around pH7.0. The newly isolated celluase genes could be used for enhancing substrate range of alcohol-producing bacteria such as Zymomonas mobilis.

  • PDF

Expression and Purification of Recombinant Superoxide Dismutase (PaSOD) from Psychromonas arctica in Escherichia coli

  • Na, Ju-Mee;Im, Ha-Na;Lee, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2405-2409
    • /
    • 2011
  • The psychrophilic bacteria Psychromonas arctica survives at subzero temperatures by having adapted several protective mechanisms against freezing and oxidative stresses. Many reactive oxygen species are likely generated in P. arctica as a result of reduced metabolic turnover rates. A previous study identified the pasod gene for superoxide dismutase from P. arctica using a series of PCR amplifications. Here, upon cloning into a His-tag fused plasmid, the sod gene from P. arctica (pasod) was successfully expressed by IPTG induction. His-tagged PaSOD was subsequently purified by $Ni^{2+}$-NTA affinity chromatography. The purified PaSOD exhibited a higher SOD activity than that of Escherichia coli (EcSOD) at all temperatures. The difference in activity between PaSOD and EcSOD becomes even more significant at 4$^{\circ}C$, indicating that PaSOD plays a functional role in the cold adaptation of P. arctica in the Arctic.

Production of Milk-Originated Antimicrobial Peptide, Lactoferricin, in E. coli (미생물을 이용한 우유 유래 항균펩타이드(락토페리신)의 생산)

  • Kang, Dae-Kyung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.25 no.2
    • /
    • pp.17-20
    • /
    • 2007
  • Bovine lactoferricin(LFcin B) is a peptide of 25 amino acids that originated from the N terminus of bovine lactoferrin, and is characterized as having potent antimicrobial activity against bacteria, fungi, protozoa and viruses. But, direct expression of Lfcin B is lethal to Escherichia coli. For the efficient production of Lfcin B in microorganism, we developed an expression system in which the gene for cationic Lfcin B was fused to an anionic peptide gene, and successfully expressed the concatemeric fusion gene in E. coli. The purified recombinant Lfcin B was found to have antimicrobial activity, as chemically synthesized Lfcin B peptide does.

  • PDF