• 제목/요약/키워드: reciprocating piston pump

검색결과 13건 처리시간 0.028초

사판식 유압 피스톤 펌프의 윤활해석 : 피스톤 왕복운동의 영향 (A Lubrication Analysis in Swash Plate Type Hydraulic Piston Pump : Effect of Piston Reciprocating Motion)

  • 박태조;구칠효
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.129-135
    • /
    • 1999
  • A numerical analysis between the piston and cylinder in swash plate type hydraulic piston pumps under reciprocating motion is presented. A finite difference method and the Newton-Raphson method are used simultaneously to solve the Reynolds equation In the clearance and the equation of motion for the piston. The tapered piston showed stable behaviors regardless of their initial eccentric conditions in the clearance and the reciprocating speed affect highly on the piston end trajectories. Therefore, the results of present study can be used other types fluid machineries.

  • PDF

유압 피스톤 펌프의 피스톤과 실린더 사이의 윤활해석 (제2보 : 피스톤의 왕복운동에 의한 영향) (A Lubrication Analysis between the Piston and Cylinder in Hydraulic Piston Pumps Part II : The Effect of Piston Reciprocating Motion)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.435-440
    • /
    • 2001
  • A numerical analysis between the piston and cylinder in hydraulic piston pumps under reciprocating motion is presented. A finite difference method and the Newton-Raphson method are used simultaneously to solve the Reynolds equation in the clearance and the equation of motion for the piston. The tapered piston showed stable behaviors regardless of their initial eccentric positions in the clearance, and the reciprocating speed affect highly on the piston end trajectories. Therefore, the numerical methods and results of present study can be used in the lubrication study of other piston-cylinder type fluid machineries.

Hexagonal reciprocating pump: advantages and weaknesses

  • Stanko, Milan;Golan, Michael
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권3호
    • /
    • pp.121-136
    • /
    • 2013
  • This paper reports the 1-D fluid transient simulation results of the discharge flow conditions in a 6-cylinder reciprocating slurry pump. Two discharge manifold configurations are studied comparatively; a case with a hexagon shaped discharge manifold where each cylinder discharges at a single vertex, and a case where all the cylinders discharges are lumped together into a tank shaped manifold. In addition, the study examines the effect of two pulsation mitigation measures in the case of hexagonal manifold; a single inline orifice in one of the hexagon sides and a volumetric dampener at the manifold outlet. The study establishes the pressure and flow fluctuation characteristics of each configuration and decouples the pulsation characteristics of the pump and the discharge manifold.

강한 측력이 작용하는 피스톤 펌프의 왕복동 피스톤 기구 부에서의 윤활모형에 관한 연구 (Lubrication Modeling of Reciprocating Piston in Piston Pump with High Lateral Load)

  • 신정훈;정동수;김경웅
    • Tribology and Lubricants
    • /
    • 제30권2호
    • /
    • pp.116-123
    • /
    • 2014
  • The objective of this study is to model and simulate the nonlinear lubrication performance of the sliding part between the piston and cylinder wall in a hydrostatic swash-plate-type axial piston pump. A numerical algorithm is developed that facilitates simultaneous calculation of the rotating body motion and fluid film pressure to observe the fluid film geometry and power loss. It is assumed that solid asperity contact, so-called mixed lubrication in this study, invariably occurs in the swash-plate-type axial piston pump, which produces a higher lateral moment on the pistons than other types of hydrostatic machines. Two comparative mixed lubrication models, rigid and elastic, are used to determine the reaction force and sliding friction. The rigid model does not allow any elastic deformation in the partial lubrication area. The patch shapes, reactive forces, and virtual local elastic deformation in the partial lubrication area are obtained in the elastic contact model using a simple Hertz contact theory. The calculation results show that a higher reaction force and friction loss are obtained in the rigid model, indicating that solid deformation is a significant factor on the lubrication characteristics of the reciprocating piston part.

등속조인트를 적용한 사판식 유압 모터/점프의 로드형 피스톤에 대한 운동해석 (A Kinematic Analysis on Piston Rod Mechanism in Swashplate Type Hydraulic Axial Piston Motor/Pump Using Constant Velocity Joint)

  • 김경호;김성동;함영복;이재천
    • 유공압시스템학회논문집
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, swash plate type hydraulic axial piston motors/pumps are being extensively used in the world, because of simple design, light weight and effective cost. Structural problem of the swash plate type motor/pump is that tilting angle of swash plate should be limited to relatively small value and lateral farce on pistons has an undesirable effect in reciprocating motion. To solve these problems, piston rod mechanism, which is commonly used in bent axis type motor/pump, is considered to be applied to the swash plate type motor/pump. In this paper, kinematic analysis was done on the piston rod mechanism. A series of formula were derived and numerical calculations were done for a set of motor parameters.

  • PDF

로드형 피스톤의 왕복운동 저항력 측정실험 (Measuring Experiment of Resistance Force on a Reciprocating Motion of Rod Type Piston)

  • 함영복;박경민;김성동;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.486-489
    • /
    • 2003
  • To reduce lateral force of traditional plunger type piston in the swash plate type hydraulic piston pumps and motors, we have proposed rod type piston with ball joint on both ends. We have studied the theoretical reaction force on two types of piston moving in the cylinder block bore. and made an experiment for the resistance force measurement on a reciprocating motion of plunger and rod type piston, changing the test condition such as swash plate angel and supply oil pressure and so on. As a result. a rod type piston has more smaller resistance force, about 29%. than a plunger type one.

  • PDF

사축식 Axial Piston Pump의 Rod 구동 메카니즘 해석 (The analysis of driving mechanism of rods in bent-axis-type axial piston pump)

  • 김종기;정재연
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.76-85
    • /
    • 1997
  • Recently, bent-axis-type axial piston pumps drived by rod being in extensively used in the world, because of simple design, lightweight, effective cost. So, to guarantee the quality of bent-axis-type axial piston pumps drived by rods, it is necessary to know chracteristics of the forces applied to rods and the driving mechanism of rods. But, as they perform both reciprocating and spinning motions, it is difficult to understand driving mechanism. In this paper, I explained the theoretical driving mechanisms of cylinder block drived by rods through geometric method and the characteristics of the forces applied to them.

  • PDF

항공기용 유압 펌프 부품의 동적특성 및 유한 요소 분석 (FEM Analysis and Dynamic Characteristics of Hydraulic Pump Assembly Components for Aircraft)

  • 김형의;한성건
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.5-11
    • /
    • 2012
  • In this paper, the numerical analysis is introduced to predict the dynamic characteristics of piston pump assembly components in hydraulic piston pump for aircraft. Rotating cylinder block and reciprocating pistons are modelled kinematically. Furthermore, leakage flow and torque losses between the boundary surfaces of components are analyzed. This analysis has been carried out through the commercial CASPAR program. The simulations for stress on pump assembly components using the dynamic analysis model are performed using the ANSYS 11 program. Such dynamic characteristics and stress simulation procedures will be carried out repeatedly for the optimized design.

유압 사축식 액셜 피스톤 펌프의 로드 구동에 관한 연구 제1보: 구동 메카니즘의 이론해석 (A Study on the Driving of Rods in Hydraulic Bent-axis-type Axial Piston Pump Part 1: The Theoretical Analysis of Driving Mechanism)

  • 김종기;오석형;정재연
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.51-57
    • /
    • 1998
  • Recently, bent-axis-type axial piston pumps driven by rods being in extensively used in the world, because of simple design, lightweight, effective cost. So, to guarantee the quality of bent-axis-type axial piston pumps driven by rods, it is necessary to know characteristics of the driving mechanism of rods. But, as they perform both reciprocating and spinning motions, it is difficult to understand driving mechanism. In this paper, I studied the theoretical driving mechanisms of cylinder block driven by rods through geometric method. I found that the cylinder block was driven by one rod in limited area and the driving area was changed by rod's tilting angle and cylinder block's swivel angle.