• Title/Summary/Keyword: real-time scheduling algorithm

Search Result 360, Processing Time 0.03 seconds

A Schedulability Analysis and Implementation of Distributed Real-Time Processes (분산 실시간 프로세스의 스케줄가능성 분석 및 구현)

  • 박흥복;김춘배
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.1
    • /
    • pp.209-221
    • /
    • 1999
  • Several approaches to anlayzing real-time schedulability have been presented, but since these used a fixed priority scheduling scheme and/or traverse all possible state spaces, there take place exponential time and space complexity of these methods. Therefore it is necessary to reduce the state space and detect schedulability at earlier time. This paper proposes and implements an advanced schedulability analysis algorithm to determine that is satisfied a given deadlines for real-time processes. These use a minimum execution time of process, periodic, deadline, and a synchronization time of processes to detect schedulability at earlier time and dynamic scheduling scheme to reduce state space using the transition rules of process algebra. From a result of implementation, we demonstrated the effective performance to determine schedulability analysis.

  • PDF

Heuristic Algorithms for Resource Leveling in Pre-Erection Scheduling and Erection Scheduling of Shipbuilding (조선 선행탑재 및 탑재 일정계획에서의 부하평준화를 위한 발견적 기법)

  • Woo, Sang-Bok;Ryu, Hyung-Gon;Hahn, Hyung-Sang
    • IE interfaces
    • /
    • v.16 no.3
    • /
    • pp.332-343
    • /
    • 2003
  • This paper deals with pre-erection scheduling and erection scheduling in shipbuilding. Among shipbuilding scheduling, the ship erection scheduling in a dock is one of the most important since the dock is the most critical resource in a shipyard. However, it is more reasonable to consider pre-erection scheduling and erection scheduling as unified because they compete with the common constrained resources such as labor, crane, space, and so on. It is very hard to consider two scheduling problems simultaneously, and hence, we approach them sequentially. At first, we propose space resource leveling heuristics in pre-erection scheduling given erection date. And then, considering the manpower resource determined by pre-erection scheduling, we also propose manpower resource leveling heuristics in erection scheduling. Various experimental results with real world data show that the proposed heuristics have good performance in terms of scheduling quality and time.

Metaheuristics of the Rail Crane Scheduling Problem (철송 크레인 일정계획 문제에 대한 메타 휴리스틱)

  • Kim, Kwang-Tae;Kim, Kyung-Min
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.281-294
    • /
    • 2011
  • This paper considers the rail crane scheduling problem which is defined as determining the sequence of loading/unloading container on/from a freight train. The objective is to minimize the weighted sum of the range of order completion time and makespan. The range of order completion time implies the difference between the maximum of completion time and minimum of start time of each customer order consisting of jobs. Makespan refers to the time when all the jobs are completed. In a rail freight terminal, logistics firms as a customer wish to reduce the range of their order completion time. To develop a methodology for the crane scheduling, we formulate the problem as a mixed integer program and develop three metaheuristics, namely, genetic algorithm, simulated annealing, and tabu search. To validate the effectiveness of heuristic algorithms, computational experiments are done based on a set of real life data. Results of the experiments show that heuristic algorithms give good solutions for small-size and large-size problems in terms of solution quality and computation time.

A Scheduling Scheme for Flexible Flow Shop with Release Date and Due Date (시작시기와 납기를 고려하는 유연흐름공장의 일정계획)

  • Lee, J.H.;Kim, S.S.
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.1-13
    • /
    • 1998
  • This paper addresses a scheduling scheme for Flexible Flow Shop(FFS) in the case that a factory is a sub-plant of an electronic device manufacturing plant. Under this environment, job orders for the sub-plants in the production route are generated together with job processing time bucket when the customer places orders for final product. The processing time bucket for each job is a duration from possible release date to permissible due date. A sub-plant modeled FFS should schedule these jobs orders within time bucket. Viewing a Printed Circuit Board(PCB) assembly line as a FFS, the developed scheme schedules an incoming order along with the orders already placed on the scheduled. The scheme consists of the four steps, 1)assigning operation release date and due date to each work cells in the FFS, 2)job grouping, 3)dispatching and 4)machine allocation. Since the FFS scheduling problem is NP-complete, the logics used are heuristic. Using a real case, we tested the scheme and compared it with the John's algorithm and other dispatching rules.

  • PDF

Research on scheduling and optimization under uncertain conditions in panel block production line in shipbuilding

  • Wang, Chong;Mao, Puxiu;Mao, Yunsheng;Shin, Jong Gye
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.4
    • /
    • pp.398-408
    • /
    • 2016
  • Based on non-completely hybrid flow line scheduling of panel block in shipbuilding, several uncertain factors influencing the problem were analyzed in a real environment, and a nonlinear integer programming model was built for each sub-scheduling problem. To narrow the difference between theory and application, rolling horizon and rescheduling methods are proposed. Moreover, with respect to the uncertainty of processing time, arriving time and due time, we take the minimizing of the early and delayed delivery costs as the objective, and establish an evaluation with a global penalty function. Finally, numerical experiments and a simulation analysis were undertaken to demonstrate the effectiveness of the model and algorithm.

A Workqueue Replication Scheduling Algorithm Using Static Information on Grid Systems (그리드 시스템에서 정적정보를 활용한 작업큐 중복 스케줄링 알고리즘)

  • Kang, Oh-Han;Kang, Sang-Sung;Song, Hee-Heon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.1
    • /
    • pp.9-16
    • /
    • 2009
  • Because Grid system consists of heterogenous computing resources, which are distributed on a wide scale, it is impossible to efficiently execute applications with scheduling algorithms of a conventional parallel system that, in contrast, aim at homogeneous and controllable resources. To suggest an algorithm that can fully reflect the characteristics of a grid system, our research is focused on examining the type of information used in current scheduling algorithms and consequently, deriving factors that could develop algorithms further. The results from the analysis of these algorithms not only show that static information of resources such as capacity or the number of processors can facilitate the scheduling algorithms but also verified a decrease in efficiency in case of utilizing real time load information of resources due to the intrinsic characteristics of a grid system relatively long computing time, and the need for the means to evade unfeasible resources or ones with slow processing time. In this paper, we propose a new algorithm, which is revised to reflect static information in the logic of WQR(Workqueue Replication) algorithms and show that it provides better performance than the one used in the existing method through simulation.

Aggressive Slack Reclamation for Soft Real-Time Task Scheduling (연성 실시간 태스크들의 스케줄링을 위한 적극적인 슬랙 재활용)

  • Kim Yong-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.12-20
    • /
    • 2006
  • In scheduling of real-time tasks, the required hardware performance for a given set of tasks is determined based on the worst case execution time. For soft real-time tasks as multimedia applications, a lower performance hardware can service the tasks. Since the execution time of a task can vary in time, we can reclaim the slacks of early completed tasks for those of longer than average execution times. Then, the average ratio of deadline-miss can be lowered. This paper presents an algorithm, Aggressive Slack Reclamation (ASR), that tasks share slacks aggressively. A simulation result shows that ASR enhances the deadline-miss ratio and number of context switches than previous results.

A Study on the Performance Improvement of Message Transmission over MVB(Multifunction Vehicle Bus)

  • Choi, Myung-Ho;Park, Jae-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2198-2202
    • /
    • 2003
  • The data transmission of MVB(Multifunction Vehicle Bus) of TCN(Train Network Communication) is divided into the periodic transmission phase and the sporadic transmission phase. TCN standard defines the event-polling method for the message transfer in the sporadic phase. However, since the event-polling method does not use pre-scheduling to the priority of the messages to be transmitted, it is inefficient for the real-time systems. To schedule message transmission, a master node should know the priority of message to be transmitted by a slave node prior to the scheduling the sporadic phase, but the existing TCN standard does not support any protocol for this. This paper proposes the slave frame bit-stuffing algorithm, with which a master node gets the necessary information for transmission scheduling and includes the simulation results of the event-polling method and the proposed algorithm.

  • PDF

Railway Track Maintenance Scheduling using Artificial Bee Colony (Artificial Bee Colony 기법을 이용한 철도궤도 유지보수 일정계획 수립 연구)

  • Nam, Duk-Hee;Kim, Ki-Dong;Lee, Sung-Uk;Kim, Sung-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.601-607
    • /
    • 2010
  • The objective of this paper is to propose a fast and easy Binary Artificial Bee Colony (BABC) heuristic algorithm to optimize NP-hard scheduling problem of railway track maintenance considering real conditions. The optimal or best solutions can be found using proposed BABC within very short or user specified computation time. We can greatly maximize the objective value using this proposed method in 30, 60, 100 and 200 work size railway track maintenance scheduling problems for experiment and analysis.

Real Time Scheduling for Multiple Yard Cranes in an Automated Container Terminal (자동화 컨테이너 터미널의 복수 장치장 크레인을 위한 실시간 작업 계획 수립)

  • Park, Tae-Jin;Choe, Ri;Ryu, Kwang-Ryel
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.869-877
    • /
    • 2007
  • This paper proposes a realtime scheduling method using local search algorithm for non-crossable yard cranes in automated container terminal. To take into consideration the dynamic property of yard crane operation and satisfy the real time constraint, the proposed method repeatedly builds crane schedule for the jobs in a fixed length look-ahead horizon whenever a new job is requested In addition, the proposed method enables the co-operation between yard cranes through prior re-handling and re-positioning in order to resolve the workload imbalance problem between the two cranes, which is one of the primary causes that lower the performance of yard cranes. Simulation-based experiments have shown that the proposed method outperforms the heuristic based methods, and the cooperation scheme contributes a lot to the performance improvement.