• Title/Summary/Keyword: real-time process

Search Result 4,099, Processing Time 0.033 seconds

Variance of waiting time in the priority scheme of token bus protocols (토큰버스 프로토콜의 우선순위기능에서 대시시간의 분산)

  • Hong, Seung-Ho
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.5
    • /
    • pp.42-53
    • /
    • 1995
  • Token bus protocols have been sidely accepted for Medium Access Control (MAC) in real-time networks such as those used in factory automation, distributed process control, nuclear power plant, aircraft and spacecraft. Token bus protocols provide timer-controlled priority mechanism, which offers multiple level of privilege of medium access to different type of traffic. This paper presents and approximate analytical model for the evaluation of variance of waiting time in the time-controlled proiority scheme of token bus protocols. Token bus system is assumed to be operated with singe-service discipline which is the practical case of real-time networks such as those used in distributed process control and factory automations. The approximate analytical model is validated by comparison with the simulation resuls.

  • PDF

Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation (실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간)

  • Lee, Jinwon;Han, Jeongho;Yang, Jeongsam
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.1
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

A Study on Defect Prediction through Real-time Monitoring of Die-Casting Process Equipment (주조공정 설비에 대한 실시간 모니터링을 통한 불량예측에 대한 연구)

  • Chulsoon Park;Heungseob Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.157-166
    • /
    • 2022
  • In the case of a die-casting process, defects that are difficult to confirm by visual inspection, such as shrinkage bubbles, may occur due to an error in maintaining a vacuum state. Since these casting defects are discovered during post-processing operations such as heat treatment or finishing work, they cannot be taken in advance at the casting time, which can cause a large number of defects. In this study, we propose an approach that can predict the occurrence of casting defects by defect type using machine learning technology based on casting parameter data collected from equipment in the die casting process in real time. Die-casting parameter data can basically be collected through the casting equipment controller. In order to perform classification analysis for predicting defects by defect type, labeling of casting parameters must be performed. In this study, first, the defective data set is separated by performing the primary clustering based on the total defect rate obtained during the post-processing. Second, the secondary cluster analysis is performed using the defect rate by type for the separated defect data set, and the labeling task is performed by defect type using the cluster analysis result. Finally, a classification learning model is created by collecting the entire labeled data set, and a real-time monitoring system for defect prediction using LabView and Python was implemented. When a defect is predicted, notification is performed so that the operator can cope with it, such as displaying on the monitoring screen and alarm notification.

A Study on Development and Application of Real Time Vision Algorithm for Inspection Process Automation (검사공정 자동화를 위한 실시간 비전알고리즘 개발 및 응용에 관한 연구)

  • Back, Seung-Hak;Hwang, Won-Jun;Shin, Haeng-Bong;Choi, Young-Sik;Park, Dae-Yeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • This study proposes a non-contact inspective technology based robot vision system for Faulty Inspection of welding States and Parts Shape. The maine focus is real time implementation of the machining parts' automatic inspection by the robotic moving. For this purpose, the automatic test instrument inspects the precision components designator the vision system. pattern Recognition Technologies and Precision Components for vision inspection technology and precision machining of precision parts including the status and appearance distinguish between good and bad. To perform a realization of a real-time automation integration system for the precision parts of manufacturing process, it is designed a robot vision system for the integrated system controller and verified the reliability through experiments. The main contents of this paper, the robot vision technology for noncontact inspection of precision components and machinery parts is useful technology for FA.

Web Based rSPC System Supporting XML Protocol (XML 프로토콜을 지원하는 웹기반 rSPC 시스템)

  • Oh, Kyoung-Je;Han, Sang-Yong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.1
    • /
    • pp.69-74
    • /
    • 2003
  • Accurate process control in the manufacturing industry is essential to survive in the competitive market. Statistical process control (SPC) system has been widely used to satisfy the ever-increasing quality control requirements. However, most commercial products in the market are not flexible, semi-automatic, and difficult to interface with other tools. In this paper, we propose an advanced rSPC (Real-Time SPC) system which is based on the web and supports XML protocol. We also provide a powerful graphic facility and an efficient file system to handle the data in real time. Even though the idea can be applied to any manufacturing system, our system is optimized to the semi-conductor industry and TFT/LCD industry. The system is implemented in C++ and COM/DCOM, and shows a good result.

Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part I: Real-time Particle Characterization by SMPS (화학기상응축 공정에서 TiO2 나노입자 특성에 미치는 반응온도와 전구체 농도의 영향 - Part I: SMPS를 이용한 실시간 입자특성 평가)

  • Lee, Chang-Woo;Yu, Ji-Hun;Im, Sung-Soon;Yun, Sung-Hee;Lee, Jai-Sung;Choa, Yong-Ho
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.323-327
    • /
    • 2003
  • Properties of nanoparticles synthesized during gas phase reaction were studied in terms of particle behaviors using real-time particle characterization method. For this study, $TiO_2$ nanoparticles were synthesized in the chemical vapor condensation process(CVC) and their in-situ measurement of particle formation and particle size distribution was performed by scanning mobility particle sizer(SMPS). As a result, particle behaviors in the CVC reactor were affected by both of number concentration and thermal coagulation, simultaneously. Particularly, growth and agglomeration between nanoparticles followed two different ways of dominances from coagulations by increase of number concentration and sintering effect by increased temperature.

Study on the 3D Virtual Ground Modeling and Application for Real-time Vehicle Driving Simulation on Off-road (실시간 야지주행 시뮬레이션을 위한 3차원 가상노면의 구성 및 적용에 대한 연구)

  • Lee, Jeong-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.92-98
    • /
    • 2010
  • Virtual ground modeling is one of key topic for real-time vehicle dynamic simulation. This paper discusses about the virtual 3D road modeling process using parametric surface concept. General road data is a type of lumped position vector so interpolation process is required to compute contact of internal surface. The parametric surface has continuity and linearity within boundaries and functions are very simple to find out contact point. In this paper, the parametric surface formula is adopted to road modeling to calculate road hight. Position indexing method is proposed to reduce memory size and resource possession, and a simple mathematical method for contact patch searching is also proposed. The developed road process program is tested in dynamic driving simulation on off-road. Conclusively, the new virtual road program shows high performance of road hight computation in vast field of off-road simulation.

A Study on Operation Problems for the Emergency Medical Process Using Real-Time Data (실시간데이터를 활용한 응급의료 프로세스 운영에 관한 연구)

  • Kim, Daebeom
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.125-139
    • /
    • 2017
  • Recently, interest in improving the quality of EMS(emergency medical services) has been increasing. Much effort is being made to innovate the EMS process. The rapid progress of ICT technology has accelerated the automation or intelligence of EMS processes. This study suggests an emergency room management method based on real-time data considering resource utilization optimization, minimization of human error and enhancement of predictability of medical care. Emergency room operation indices - Emergency care index, Short stay index, Human error inducing index, Waiting patience index - are developed. And emergency room operation rules based on these indices are presented. Simulation was performed on a virtual emergency room to verify the effectiveness of the proposed operating rule. Simulation results showed excellent performance in terms of length of stay.

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.

A REAL-TIME PMIS BASED INDUSTRIAL CONSTRUCTION PROJECT MANAGEMENT SYSTEM

  • Kyusung Lee;Hojeong Song;Jaehyun Choi
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.352-358
    • /
    • 2013
  • As amount of information in construction industry is growing, the role of information system in project management is becoming increasingly important. With the emerging IT application to the advancing construction industry, construction project management system with advanced technology has been progressed vigorously to improve construction productivity and management efficiency. Recently, a web-based Project Management Information System (PMIS) is developed to support decision-making process by efficiently managing project related information generated from various discipline. Many firms are in the process of developing the PMIS system or already have been applied the system to various projects. However, PMIS is still in its early stage of development to be applied at industrial plant construction projects that process management is significantly emphasized for the successful execution of the project. With the complexity of the industrial plant projects, the industry practitioners need to be able to visualize the construction schedule information to manage the project efficiently. This study suggests methodologies for improving PMIS specialized for industrial plant piping construction projects to estimate the baseline schedule and performance measurement more accurately by developing a framework for the piping construction projects. By using this developed system, the researchers expect that piping construction projects will be more efficiently managed on a real-time basis through measuring progress of piping at each and every state of progress milestone and provide management with opportunities to forecast the level of efforts required to execute the remaining work scope in a timely manner

  • PDF