Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.5.323

Effects of Temperature and Precursor-concentration on Characteristics of TiO2 Nanoparticles in Chemical Vapor Condensation Process -Part I: Real-time Particle Characterization by SMPS  

Lee, Chang-Woo (Department of Metallurgy and Materials Science, Hanyang University)
Yu, Ji-Hun (Department of Metallurgy and Materials Science, Hanyang University)
Im, Sung-Soon (Department of Metallurgy and Materials Science, Hanyang University)
Yun, Sung-Hee (Department of Metallurgy and Materials Science, Hanyang University)
Lee, Jai-Sung (Department of Metallurgy and Materials Science, Hanyang University)
Choa, Yong-Ho (Department of New-Matarials Technology, Hanyang University)
Publication Information
Korean Journal of Materials Research / v.13, no.5, 2003 , pp. 323-327 More about this Journal
Abstract
Properties of nanoparticles synthesized during gas phase reaction were studied in terms of particle behaviors using real-time particle characterization method. For this study, $TiO_2$ nanoparticles were synthesized in the chemical vapor condensation process(CVC) and their in-situ measurement of particle formation and particle size distribution was performed by scanning mobility particle sizer(SMPS). As a result, particle behaviors in the CVC reactor were affected by both of number concentration and thermal coagulation, simultaneously. Particularly, growth and agglomeration between nanoparticles followed two different ways of dominances from coagulations by increase of number concentration and sintering effect by increased temperature.
Keywords
CVC process; real-time particle characterization; coagulation; sintering; SMPS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Seto, T. Nakamoto, K. Okuyama, M. Adachi, Y. Kuga and K.Takeuchi, J. Aerosol Sci., 28(2), 193 (1997)   DOI   ScienceOn
2 N. M. Hwang, J. H. Hahn and D. Y. Yoon, J. of Crystal Growth, 162(1/2), 55 (1996)   DOI   ScienceOn
3 W. Chang, G. Skandan, H. Hahn, S. C. Danforth and B. H. Kear, NanoStructured Materials, 4(3), 345 (1994)   DOI   ScienceOn
4 W. Chang, G. Skandan, S. C. Danforth, B. H. Kear and H. Hahn, NanoStructured Materials, 4(5), 507 (1994)   DOI   ScienceOn
5 B. H. Kear and P. R. Strutt, NanoStructured Materials, 6(1/2), 227 (1995)   DOI   ScienceOn
6 R. L. Axelbaum, D. P. DuFaux and C. A. Frey, J. Mater. Res., 11, 948 (1996)   DOI
7 D. J. Cheng, W. P. Sun, and m.H. Hon, Thin Solid Films, 45(1), 109 (1987)   DOI   ScienceOn
8 J. J. Wu, H. V. Nguyen, R. C. Flagan, K. Okuyama, and Y. Kousaka, AlChE Journal, 34(8), 1249 (1988)   DOI   ScienceOn
9 J. H. Yu, Dissertation, Hanyang University, Korea, 2001
10 M. Smoluchowski, Bull. Acad. Sci., Cracow, la28 (1911)
11 J. H. Yu, J. S. Lee and K. H. Ahn, Scripta Materilia, 44(8/9), 2213 (2001)   DOI   ScienceOn
12 R. W. Siegel, NanoStructured Materials, 4(1), 121 (1994)   DOI   ScienceOn
13 H. Gleiter, NanoStructured Materials, 6, 3 (1995)   DOI   ScienceOn
14 R. L. Holtz, V. Provensano and M. A. Iman, NanoStructured Materials, 7(1/2), 259 (1996)   DOI   ScienceOn
15 R. D. Shull, NanoStructured Materials, 7(1/2), 265 (1996)   DOI   ScienceOn