• Title/Summary/Keyword: real-time location

Search Result 1,387, Processing Time 0.037 seconds

Research on Drivable Road Area Recognition and Real-Time Tracking Techniques Based on YOLOv8 Algorithm (YOLOv8 알고리즘 기반의 주행 가능한 도로 영역 인식과 실시간 추적 기법에 관한 연구)

  • Jung-Hee Seo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.3
    • /
    • pp.563-570
    • /
    • 2024
  • This paper proposes a method to recognize and track drivable lane areas to assist the driver. The main topic is designing a deep-based network that predicts drivable road areas using computer vision and deep learning technology based on images acquired in real time through a camera installed in the center of the windshield inside the vehicle. This study aims to develop a new model trained with data directly obtained from cameras using the YOLO algorithm. It is expected to play a role in assisting the driver's driving by visualizing the exact location of the vehicle on the actual road consistent with the actual image and displaying and tracking the drivable lane area. As a result of the experiment, it was possible to track the drivable road area in most cases, but in bad weather such as heavy rain at night, there were cases where lanes were not accurately recognized, so improvement in model performance is needed to solve this problem.

Smart Tour based on WEB (WEB 기반 스마트 관광)

  • Chang-Pyoung Han;You-Sik Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • Nowadays, based on the 4th Industrial Revolution, by using the CHATGPT function and 3D virtual reality technology, anyone can easily open a virtual environment WEB-based, smart tourism OPEN source and travel destination without having to directly visit the travel location in the real world. Using the API function, it provides the convenience of virtual tourism. However, this function does not work if the travel transportation system is suddenly changed due to sudden bad weather, travel operation information cannot be checked in real time, and due to a lack of flight cancellation information and passenger ship operation information, it cannot be used until the plane or ferry departs normally. A very inconvenient problem arises where you have to wait a long time in the waiting room. Therefore, in this paper, in order to solve this problem, automatic duty-free product information and automatic product payment functions were added even when passenger ship cancellations and operation information suddenly occur due to bad weather and multiple products are purchased during the trip. In addition, the computer simulation experiment was conducted on a WEB basis so that anyone can conveniently travel smartly.

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

Moving obstacle avoidance of a robot using avoidability measure (충돌 회피 가능도를 이용한 로봇의 이동 장애물 회피)

  • Ko, Nak-Yong;Lee, Beom-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.169-178
    • /
    • 1997
  • This paper presents a new solution approach to moving obstacle avoidance problem of a robot. A new concept, avoidability measure(AVM) is defined to describe the state of a pair of a robot and an obstacle regarding the collision between them. As an AVM, virtual distance function(VDF) is derived as a function of three state variables: the distance from the obstacle to the robot, outward speed of the obstacle relative to the robot, and outward speed of the robot relative to the obstacle. By keeping the virtual distance above some positive limit value, the robot avoids the obstacle. In terms of the VDF, an artificial potential is constructed to repel the robot away from the obstacle and to attract the robot toward a goal location. At every sampling time, the artificial potential field is updated and the force driving the robot is derived from the gradient of the artificial potential field. The suggested algorithm drives the robot to avoid a moving obstacle in real time. Since the algorithm considers the mobility of the obstacle and robot as well as the distance, it is effective for moving obstacle avoidance. Some simulation studies show the effectiveness of the proposed approach.

  • PDF

Humanitarian Relief Logistics with Time Restriction: Thai Flooding Case Study

  • Manopiniwes, Wapee;Nagasawa, Keisuke;Irohara, Takashi
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.398-407
    • /
    • 2014
  • Shortages and delays in a humanitarian logistics system can contribute to the pain and suffering of survivors or other affected people. Humanitarian logistics budgets should be sufficient to prevent such shortages or delays. Unlike commercial supply chain systems, the budgets for relief supply chain systems should be able to satisfy demand. This study describes a comprehensive model in an effort to satisfy the total relief demand by minimizing logistics operations costs. We herein propose a strategic model which determines the locations of distribution centers and the total inventory to be stocked for each distribution center where a flood or other catastrophe may occur. The proposed model is formulated and solved as a mixed-integer programming problem that integrates facility location and inventory decisions by considering capacity constraints and time restrictions in order to minimize the total cost of relief operations. The proposed model is then applied to a real flood case involving 47 disaster areas and 13 distribution centers in Thailand. Finally, we discuss the sensitivity analysis of the model and the managerial implications of this research.

The Development of VOC Measurement System Uging PCA & ANN (PCA와 ANN을 이용한 VOC 측정기기 개발)

  • Lee Jang-Hoon;Kwon Hyuk-Ku;Park Seung Ho;Kim Dong-Jin;Hong Chol-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2004
  • Air quality monitoring is a primary activity for industrial and social environment. The government identifies the pollutants that each industry must monitor. Especially, the VOCs (Volatile Organic Compounds), which are very harmful to human body and environment atmosphere, should be controlled under the government policy. However, the VOCs, which have not been confirmed in emission sources are very difficult to monitor. It is needed to develop the monitoring system that allow the continuous and in situ measurement of VOCs mixture in different environmental matrices. Gas chromatography and mass spectrometry are the most prevalent current techniques among those available for the analysis of VOCs. But, they need a large size analytical instrument, which costs a great deal for purchase and operation. In addition, it has some limitations for realtime environmental monitoring such as location problems and slow processing time. Recently, several companies have commercialized a portable VOCs measurement systems, which cannot classify various kinds of VOCs but total quantities. We have developed a VOCs measurement system, which recognizes various kinds and quantities of VOCs, such as benzene, toluene, and xylene (BTX). Also, it can be used as a stand- alone type and/or fixed type in the vehicle with rack for real -time environmental monitoring.

Identification of Arcing Fault and Development of An Adaptive Reclosing Technique about Arcing Ground Fault (아크지락사고에 대한 사고 판별 및 적응 재폐로 기법)

  • Kim, H.H.;Choo, S.H.;Chae, M.S.;Park, J.B.;Shin, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.354-356
    • /
    • 2006
  • This paper presents a new one-terminal numerical algorithm for fault location estimation and for faults recognition. The proposed algorithm are derived for the case of most frequent single-phase line to ground fault in the time domain. The arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent of transient. In this paper the algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm the Electro-Magnetic Transient Program(EMTP/ATP) is used.

  • PDF

A Study on the Facal motion and for Detection of area Using Kalman Fillter algorithm (Facal motion 예측 및 영역 검출을 위한 칼만 필터 알고리즘)

  • Seok, Gyeong-Hyu;Park, Bu-Yeon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.973-980
    • /
    • 2011
  • In this paper, we gaze upon the movement faces the problem points are difficult to identify a user based on points and that corrective action is needed to solve the identification system is proposed a new eye. Kalman filter, the current head of the location information was used to estimate the future position in order to determine the authenticity of the face facial features and structural elements, the information and the processing time is relatively fast horizontal and vertical elements of the face using the histogram analysis to detect. And an infrared illuminator obtained by constructing a bright pupil effect in real-time detection of the pupil, the pupil was tracked - geulrinteu vectors are extracted.

Assessment of the Daylighting Performance in Residential Building Units of South Korea through RADIANCE simulation (시뮬레이션을 이용한 주거용 건축물의 공간별 채광성능 평가)

  • Lim, Tae Sub;Lim, Hong Soo;Koo, Jae-O;Kim, Gon
    • KIEAE Journal
    • /
    • v.12 no.2
    • /
    • pp.25-32
    • /
    • 2012
  • This paper focused on the daylighting performance of residential high-rise buildings in South-Korea. the purpose of this study is to estimate the visual environment of sunlight coming into opening according to sky conditions, orientation of windows and each space of Apartment buildings. Season of the year, weather, and time of day combine with predictable movement patterns of the sun to create highly variable and dynamic daylighting conditions. Daylighting design is usually based on the dominant sky condition and the micro-climate for the building site. There are three common sky conditions: clear sky, overcast sky, and partly cloudy sky. The clear sky includes sunshine and is intense and brighter at the horizon than at the zenith, except in the area around the sun. Daylight received within a building is directly dependent upon the sun's position and the atmospheric conditions. Easily used charts, diagrams, and software programs allow study of solar geometry for any geographic location and time of day. on the other hand, the overcast sky is characterized by diffuse and variable levels of light and has dense cloud cover over 90% of the sky. This paper was calculated by a Desktop Radiance program. The space dimensions were based on a unit module of real constructed apartment having divided into five sections such as living room, room1, room2, room3 and kitchen.

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.