• Title/Summary/Keyword: real terrain

Search Result 264, Processing Time 0.026 seconds

Design and development of an automated all-terrain wheeled robot

  • Pradhan, Debesh;Sen, Jishnu;Hui, Nirmal Baran
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.21-39
    • /
    • 2014
  • Due to the rapid progress in the field of robotics, it is a high time to concentrate on the development of a robot that can manoeuvre in all type of landscapes, ascend and descend stairs and sloping surfaces autonomously. This paper presents details of a prototype robot which can navigate in very rough terrain, ascend and descend staircase as well as sloping surface and cross ditches. The robot is made up of six differentially steered wheels and some passive mechanism, making it suitable to cross long ditches and landscape undulation. Static stability of the developed robot have been carried out analytically and navigation capability of the robot is observed through simulation in different environment, separately. Description of embedded system of the robot has also been presented and experimental validation has been made along with some details on obstacle avoidance. Finally the limitations of the robot have been explored with their possible reasons.

A Study on the Analysis of the Current Situation of the Target Site Using the Image of Unmanned Aircraft in the Environmental Impact Assessment

  • Ki-Sun Song;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.381-388
    • /
    • 2023
  • Small-scale environmental impact assessments have limitations in terms of survey duration and evaluation resources, which can hinder the assessment and analysis of the current situation. In this study, we propose the use of drone technology during the environmental impact assessment process to supplement these limitations in the current situation analysis. Drone photography can provide rapid and accurate high-resolution images, allowing for the collection of various information about the target area. This information can include different types of data such as terrain, vegetation, landscape, and real-time 3D spatial information, which can be collected and processed using GIS software to understand and analyze the environmental conditions. In this study, we confirmed that terrain and vegetation analysis and prediction of the target area using drone photography and GIS analysis software is possible, providing useful information for environmental impact assessments.

Generation of 3-Dimensional Landscape Map from Aerial Photos (항공사진을 이용한 3차원 경관도 제작)

  • Yeu, Bock-Mo;Jeong, Soo;Kim, Won-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.3 no.1 s.5
    • /
    • pp.105-113
    • /
    • 1995
  • Three-dimensional landscape map is very useful in terrain analysis as it looks like real shape of terrain. When three-dimensional landscape map is needed, landscape photos achieved at a position of high elevation or by airplane are generally used. But, this approach can not fully satisfy the user's need to get pictures from various view points. In addition, because photos have some geometric displacement caused by the principle of central projection of camera, it is hard to get accurate locations from the photo. This paper aims to get three-dimensional landscape map similar to real terrain feature from vertical stereo aerial photos by digital photogrammetric techniques. This approach can provide a very useful data for three-dimensional terrain analysis as a function of Geo-Spatial Information System.

  • PDF

A Terrain Rendering Method using Roughness Map and Bias Map (거칠기맵과 편향맵을 이용한 지형 렌더링 가법)

  • Lee, Eun-Seok;Jo, In-Woo;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2011
  • In recent researches, several LOD techniques are used for real-time visualization of large sized terrain data. However, during mesh simplification, geometry popping may occur in consecutive frames, because of the geometric error. We propose an efficient method for reducing the geometry popping using roughness map and bias map. A roughness map and a bias map are used to move vertices of the terrain mesh to appropriate position where they minimize the geometry errors. A roughness map and a bias map are represented as a texture suitable for GPU processing. Moving vertices using bias map is processed on the GPU, so the high-speed visualization can be possible.

Quadtree-based Terrain Visualization Using Vertex Multiplication (정점증식을 이용한 사진트리 기반 지형 시각화 기법)

  • Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • In terrain visualization, the quadtree is the most frequently used data structure for progressive mesh generation. The quadtree provides an efficient level-of-detail selection and view frustum culling. However, most applications using quadtrees are performed by the CPU, since the hierarchical data structure cannot be manipulated in a programmable rendering pipeline. For this reason, quadtree-based methods show lower performance and higher dependancy of CPU in comparison to GPU-based methods. We present a quadtree-based terrain-rendering method for GPU execution that uses vertex multiplication. It offers higher performance than previous CPU-based quadtree methods, without loss of image quality.

  • PDF

Design and Development of Terrain-adaptive and User-friendly Remote Controller for Wheel-Track Hybrid Mobile Robot Platform (휠-트랙 하이브리드 모바일 로봇 플랫폼의 지형 적응성 및 사용자 친화성 향상을 위한 원격 조종기 설계와 개발)

  • Kim, Yoon-Gu;An, Jin-Ung;Kwak, Jeong-Hwan;Moon, Jeon-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.558-565
    • /
    • 2011
  • Various robot platforms have been designed and developed to perform given tasks in a hazardous environment for surveillance, reconnaissance, search and rescue, etc. We considered a terrain-adaptive and transformable hybrid robot platform that is equipped with rapid navigation capability on flat floors and good performance in overcoming stairs or obstacles. The navigation mode transition is determined and implemented by adaptive driving mode control of the mobile robot. In order to maximize the usability of wheel-track hybrid robot platform, we propose a terrain-adaptive and user-friendly remote controller and verify the efficiency and performance through its navigation performance experiments in real and test-bed environments.

Realistic and Real-Time Modeling of Numerous Trees Using Growing Environment (성장 환경을 활용한 다수의 나무에 대한 사실적인 실시간 모델링 기법)

  • Kim, Jin-Mo;Cho, Hyung-Je
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.3
    • /
    • pp.398-407
    • /
    • 2012
  • We propose a tree modeling method of expressing realistically and efficiently numerous trees distributed on a broad terrain. This method combines and simplifies the recursive hierarchy of tree branch and branch generation process through self-organizing from buds, allowing users to generate trees that can be used more intuitively and efficiently. With the generation process the leveled structure and the appearance such as branch length, distribution and direction can be controlled interactively by user. In addition, we introduce an environment-adaptive model that allows to grow a number of trees variously by controlling at the same time and we propose an efficient application method of growing environment. For the real-time rendering of the complex tree models distributed on a broad terrain, the rendering process, the LOD(level of detail) for the branch surfaces, and shader instancing are introduced through the GPU(Graphics Processing Unit). Whether the numerous trees are expressed realistically and efficiently on wide terrain by proposed models are confirmed through simulation.

Interactive Locomotion Controller using Inverted Pendulum Model with Low-Dimensional Data (역진자 모델-저차원 모션 캡처 데이터를 이용한 보행 모션 제어기)

  • Han, KuHyun;Kim, YoungBeom;Park, Byung-Ha;Jung, Kwang-Mo;Han, JungHyun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1587-1596
    • /
    • 2016
  • This paper presents an interactive locomotion controller using motion capture data and inverted pendulum model. Most of the data-driven character controller using motion capture data have two kinds of limitation. First, it needs many example motion capture data to generate realistic motion. Second, it is difficult to make natural-looking motion when characters navigate dynamic terrain. In this paper, we present a technique that uses dimension reduction technique to motion capture data together with the Gaussian process dynamical model (GPDM), and interpolates the low-dimensional data to make final motion. With the low-dimensional data, we can make realistic walking motion with few example motion capture data. In addition, we apply the inverted pendulum model (IPM) to calculate the root trajectory considering the real-time user input upon the dynamic terrain. Our method can be used in game, virtual training, and many real-time applications.

A Study on Regular Grid Based Real-Time Terrain LOD Algorithm for Enhancing Memory Efficiency (메모리 효율 향상을 위한 고정격자기반 실시간 지형 LOD 알고리즘에 관한 연구)

  • Whangbo Taeg-keun;Yang Young-Kyu;Moon Min-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.6
    • /
    • pp.409-418
    • /
    • 2004
  • LOD is a widely used technique in 3D game and animation to represent large 3D data sets smoothly in real-time. Most LOD algorithms use a binary tree to keep the ancestor information. A new algorithm proposed in this paper, however, do not keep the ancestor information, thus use the less memory space and rather increase the rendering performance. To verify the efficiency of the proposed algorithm, performance comparison with ROAM is conducted in real-time 3D terrain navigation. Result shows that the proposed algorithm uses about 1/4 of the memory space of ROAM and about 4 times faster than ROAM.

3-D Gravity Terrain Inversion for High Resolution Gravity Survey (고정밀 중력 탐사를 위한 3차원 중력 지형 역산 기법)

  • Park, Gye-Soon;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Recently, the development of accurate gravity-meter and GPS make it possible to obtain high resolution gravity data. Though gravity data interpretation like modeling and inversion has significantly improved, gravity data processing itself has improved very little. Conventional gravity data processing removes gravity effects due to mass and height difference between base and measurement level. But, it would be a biased density model when some or whole part of anomalous bodies exist above the base level. We attempted to make a multiquadric surface of the survey area from topography with DEM (Digital Elevation Map) data. Then we constituted rectangular blocks which reflect real topography of the survey area by the multiquadric surface. Thus, we were able to carry out 3-D inversions which include information of topography. We named this technique, 3-D Gravity Terrain Inversion (3DGTI). The model test showed that the inversion model from 3DGTI made better results than conventional methods. Furthermore, the 3-dimensional model from the 3DGTI method could maintain topography and as a result, it showed more realistic geologic model. This method was also applied on real field data in Masan-Changwon area. Granitic intrusion is an important geologic characteristic in this area. This method showed more critical geological boundaries than other conventional methods. Therefore, we concluded that in the case of various rocks and rugged terrain, this new method will make better model than convention ones.