• 제목/요약/키워드: real terrain

검색결과 264건 처리시간 0.02초

쿼드트리와 웨이블릿 변환을 이용한 실시간 지형 렌더링 (Real-Time Terrain Rendering using Quadtree Wavelet Transform)

  • 한정현;박헌기;정문주
    • 한국시뮬레이션학회논문지
    • /
    • 제10권3호
    • /
    • pp.95-103
    • /
    • 2001
  • Rendering of 3D terrain data in real-time is difficult because of its large scale. So, it is necessary to use level-of-detail(LOD) that uses fewer data, but makes almost similar image to the original. We present an algorithm for real-time LOD generation and rendering of 3D terrain data. The algorithm applies wavelet transform to the terrain data, and then generates quadtree based view-dependent LOD using wavelet coefficients that are the output of wavelet transform. It also uses frame-to-frame coherence and view culling for high frame rates.

  • PDF

Real-Time Terrain Rendering Framework for GIS Applications

  • Kang, Dong-Soo;Lee, Eun-Seok;Shin, Byeong-Seok
    • 한국공간정보시스템학회 논문지
    • /
    • 제11권2호
    • /
    • pp.73-78
    • /
    • 2009
  • Real-time 3D visualization of terrain data is one of the important issues in GIS(Geographic Information System) field. We present a real-time terrain rendering engine that can use several types of GIS data source such as DEM(Digital Elevation Map), DTED(Digital Terrain Elevation Data) and LIDAR(Light Detection And Ranging). Our rendering engine is a quadtree-based terrain rendering framework with several acceleration modules. This can generate an ocular and binocular image. Also it can be applied to the flight simulation, walk-through simulation and a variety of GIS applications.

  • PDF

실제지형을 고려한 고정익 무인항공기의 최적 경로계획 (Optimal Path Planner Considering Real Terrain for Fixed-Wing UAVs)

  • 이다솔;심현철
    • 제어로봇시스템학회논문지
    • /
    • 제20권12호
    • /
    • pp.1272-1277
    • /
    • 2014
  • This article describes a path planning algorithm for fixed-wing UAVs when a real terrain should be considered. Nowadays, many UAVs are required to perform mission flights near given terrain for surveillance, reconnaissance, and infiltration, as well as flight altitude of many UAVs are relatively lower than typical manned aerial vehicles. Therefore, real terrain should be considered in path planning algorithms of fixed-wing UAVs. In this research, we have extended a spline-$RRT^*$ algorithm to three-dimensional planner. The spline-$RRT^*$ algorithm is a $RRT^*$ based algorithm, and it takes spline method to extend the tree structure over the workspace to generate smooth paths without any post-processing. Direction continuity of the resulting path is guaranteed via this spline technique, and it is essential factor for the paths of fixed-wing UAVs. The proposed algorithm confirm collision check during the tree structure extension, so that generated path is both geometrically and dynamically feasible in addition to direction continuity. To decrease degrees of freedom of a random configuration, we designed a function assigning directions to nodes of the graph. As a result, it increases the execution speed of the algorithm efficiently. In order to investigate the performance of the proposed planning algorithm, several simulations are performed under real terrain environment. Simulation results show that this proposed algorithm can be utilized effectively to path planning applications considering real terrain.

An Open Standard-based Terrain Tile Production Chain for Geo-referenced Simulation

  • Yoo, Byoung-Hyun
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.497-506
    • /
    • 2008
  • The needs for digital models of real environment such as 3D terrain or cyber city model are increasing. Most of applications related with modeling and simulation require virtual environment constructed from geospatial information of real world in order to guarantee reliability and accuracy of the simulation. The most fundamental data for building virtual environment, terrain elevation and orthogonal imagery is acquired from optical sensor of satellite or airplane. Providing interoperable and reusable digital model is important to promote practical application of high-resolution satellite imagery. This paper presents the new research regarding representation of geospatial information, especially for 3D shape and appearance of virtual terrain. and describe framework for constructing real-time 3D model of large terrain based on high-resolution satellite imagery. It provides infrastructure of 3D simulation with geographical context. Web architecture, XML language and open protocols to build a standard based 3D terrain are presented. Details of standard-based approach for providing infrastructure of real-time 3D simulation using high-resolution satellite imagery are also presented. This work would facilitate interchange and interoperability across diverse systems and be usable by governments, industry scientists and general public.

An Efficient Algorithm for Real-Time 3D Terrain Walkthrough

  • Hesse, Michael;Gavrilova, Marina L.
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.111-117
    • /
    • 2003
  • The paper presents an efficient algorithm based on ROAM for visualization of large scale terrain models in real-time. The quality and smoothness of the terrain data visualization within a 3D interactive environment is preserved, while the complexity of the algorithm is kept on a reasonable level. The main contribution of the paper is an introduction of a number of efficient techniques such as implicit coordinates method within the patch array representing ROAM and the viewpoint dependent triangle rendering method for dynamic level of detail (LOD) updates. In addition, the paper presents experimental comparison of a variety of culling techniques, including a newly introduced method: relational position culling. These techniques are incorporated in the visualization software, which allows to achieve more realistic terrain representation and the real-time level of detail reduction.

주행로봇 제어를 위한 험지의 최대마찰계수 추정 (Estimation of the Maximum Friction Coefficient of the Rough Terrain to Control the Mobile Robots)

  • 강현석;곽윤근;최현도;정해관;김수현
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1062-1072
    • /
    • 2008
  • When mobile robots perform the mission in the rough terrain, the traversability depended on the terrain characteristic is useful information. In the traversabilities, wheel-terrain maximum friction coefficient can indicate the index to control wheel-terrain traction force or whether mobile robots to go or not. This paper proposes estimating wheel-terrain maximum friction coefficient. The existing method to estimate the maximum friction coefficient is limited in flat terrain or relatively easy driving knowing wheel absolute velocity. But this algorithm is applicable in rough terrain where a lot of slip occurred not knowing wheel absolute velocity. This algorithm applies the tire-friction model to each wheel to express the behavior of wheel friction and classifies slip-friction characteristic into 3 major cases. In each case, the specific algorithm to estimate the maximum friction coefficient is applied. To test the proposed algorithm's feasibility, test bed(ROBHAZ-6WHEEL) simulations are performed. And then the experiment to estimate the maximum friction coefficient of the test bed is performed. To compare the estimated value with the real, we measure the real maximum friction coefficient. As a result of the experiment, the proposed algorithm has high accuracy in estimating the maximum friction coefficient.

재난재해 현장의 지형인지를 위한 통합 센서 모듈 개발 (Development of an Integrated Sensor Module for Terrain Recognition at Disaster Sites)

  • 서명국;윤복중;신희영;이경준
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권3호
    • /
    • pp.9-14
    • /
    • 2020
  • A special purpose machine with two manipulators and quadruped crawler system is being developed to work at disaster sites where it is intended to quickly respond in the initial stages after the event. In this study, a terrain recognition module is developed so that the above special purpose machine can quickly obtain ground information to help choose its path while recognizing objects in its way, this is intended to enhance the remote driver's limited situational awareness. Terrain recognition modules were developed for two tasks (real-time path guidance, precision terrain measurements). The real-time path guidance analyzes terrain and obstacles while moving, while the precision terrain measurement feature provides more accurate terrain information by precisely measuring the ground in front of the vehicle while stationary. In this study, an air-cooled sensor protection module was developed so that the terrain recognition module can continue its vital tasks in the event of exposure to foreign substances, including scattered dust, mist and rainfall, as well as high temperatures.

항법정보와 실시간 업데이트 지형 데이터를 사용한 3D 지형 재구축 시스템 (A 3D Terrain Reconstruction System using Navigation Information and Realtime-Updated Terrain Data)

  • 백인선;엄기현;조경은
    • 한국게임학회 논문지
    • /
    • 제10권6호
    • /
    • pp.157-168
    • /
    • 2010
  • 게임 캐릭터와 객체들이 상호작용하는 지형은 가상세계를 구성하기 위한 필수 요소이다. 지형을 제작할 때 많은 갱신 작업과 시간이 들어가는 문제점이 발생한다. 본 논문에서는 실제 지형을 촬영한 데이터로부터 가상 공간의 3D 지형을 생성하기 위한 3D 지형 재구축 시스템을 제안한다. 제안시스템에서는 스테레오 카메라로 촬영하고, 레이져 스캐너로 실측한 3차원 지형 데이터를 기반으로 생성된 그리드 기반의 높이 맵(Height Map)과 로봇의 항법정보 중 z축과 x축 방향 벡터를 이용해 가상공간의 중심인 월드좌표계에 맞게 로테이션을 수행하여 축의 방향을 일치시키고, 로봇 중심의 좌표계에서 월드 좌표계로의 이동 벡터를 각 포인트에 더하여 최종적으로 월드좌표계에 맞게 변환한다. 이후 무방향성 그래프를 사용하여 지형 데이터를 관리하면서 가상공간에서 필요한 부분에만 동적으로 지형 메쉬를 생성한다. 이때 지형 데이터의 오류를 보정하여 메쉬를 올바르게 갱신한다. 실험에서는 제안 시스템이 지형 재구축을 완료할 때까지 일정한 주기로 FPS를 확인하고, 완성된 지형을 가시화하여 품질을 검토하였다. 지형의 전체 크기를 알 수 없거나, 실시간으로 지형의 크기가 변화하는 환경에서는, 제안된 시스템이 쿼드트리를 사용한 지형 관리보다 지형 크기가 작을 때 3배정도의 높은 FPS를 보이나, 지형이 아주 클 때는 평균 40% 정도 나은 실행 성능을 가진다. 최종적으로는, 실측한 지형의 모양을 그대로 유지하면서 가시화하고 있다. 본 연구에서 제안한 시스템을 이용하여 게임에 이용할 지형 데이터를 실시간으로 자동 생성하여 게임에 이용하거나, 실제 지형을 배경으로 필요한 영화의 CG 작업에 활용하는 등의 응용 방안을 고려해 볼 수 있다.

Dynamic Simulation of Modifiable Bipedal Walking on Uneven Terrain with Unknown Height

  • Hong, Young-Dae;Lee, Ki-Baek
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.733-740
    • /
    • 2016
  • To achieve bipedal walking in real human environments, a bipedal robot should be capable of modifiable walking both on uneven terrain with different heights and on flat terrain. In this paper, a novel walking pattern generator based on a 3-D linear inverted pendulum model (LIPM) is proposed to achieve this objective. By adopting a zero moment point (ZMP) variation scheme in real time, it is possible to change the center-of-mass (COM) position and the velocity of the 3-D LIPM throughout the single support phase. Consequently, the proposed method offers the ability to generate a modifiable pattern for walking on uneven terrain without the necessity for any extra footsteps to adjust the COM motion. In addition, a control strategy for bipedal walking on uneven terrain with unknown height is developed. The torques and ground reaction force are measured through force-sensing resisters (FSRs) on each foot and the foot of the robot is modeled as three virtual spring-damper models for the disturbance compensation. The methods for generating the foot and vertical COM of 3-D LIPM trajectories are proposed to achieve modifiable bipedal walking on uneven terrain without any information regarding the height of the terrain. The effectiveness of the proposed method is confirmed through dynamic simulations.

왕(Wang) 타일 지형 합성과 시차 맵핑을 이용한 실시간 렌더링 (Wang Tile Terrain Synthesis and Real-Time Rendering using Parallax Mapping)

  • 정재원;최민규
    • 한국게임학회 논문지
    • /
    • 제8권1호
    • /
    • pp.71-77
    • /
    • 2008
  • 높이 맵으로부터 지형의 기하구조를 형성하고 그 세부 묘사를 위하여 왕 타일을 이용하여 반복적이지 않는 타일링을 할 수 있다. 타일 내에 색상 정보와 더불어 높이 정보를 추가하여 세부적인 요철의 정보를 담아 시차 맵핑을 통하여 효과적으로 표현 할 수 있다. 본 논문에서는 이를 실시간 렌더링 할 때 문제되는 부분을 해결하였으며, 지형을 위한 시차 맵핑의 보안을 제안한다.

  • PDF