
International Journal of CAD/CAM Vol. 3, No. 2, pp. 111-117 (2003) International
Journal of
CAD/CAM

www.ijcc.org

An Efficient Algorithm for Real-Time 3D Terrain Walkthrough

Michal Hesse and Marina L. Gavrilova*

* Corresponds ng author:
Tel: +1-403-220-5105
Fax: +1-403-284-4707
E-mail: niarina@cpsc.ucalgary.ca

Department of Computer Science, University of Calgary, Calgcuy, Alberta, Canada

Abstract 一 The paper presents an efficient algorithm based on ROAM for visualization of large scale terrain models in real
time. The quality and smoothness of the terrain data visualization within a 3D interactive environment is preserved, while the
complexity of the algorithm is kept on a reasonable level. The main contribution of the paper is an introduction of a number
of efficient techniques such as implicit coordinates method within the patch array representing ROAM and the viewpoint
dependent tiiangle rendering method for dynamic level of detail (LOD) updates. In addition, the paper presents experimental
comparison of a variety of culling techniques, including a newly introduced method: relational position culling. These
techniques are incorporated in the visualization software, which allows to achieve more realistic terrain representation and the
real-time level of detail reduction.

Keywords\ Terrain rendering, ROAM, Implicit coordinates method, Culling techniques, GIS

1. Introduction

High quality rendering and meshing techniques for
displaying complex geographical data, such as terrain
mod이s, play an important role in the ftist growing
domain of CAD oriented towards Geographic Information
Systems (GIS). According to a recent review, conducted
as a part of Virtual Terrain Project on convergence of
the fields of CAD, GIS and visual simulation [13],
even today the vast majority of CAD is only 2D
blueprints, not 3D models. The conversion from 2D to
3D is generally a difficult process requiring highly
efficient algorithms, and there are practically no freely
available tools for 3D CAD that could be useful in GIS.
In addition, for exploring different kinds of geographic
based data sets on screen it is necessary to display data
at interactive frame rates. Because of the inherent
geometric complexity, this goal is often hard to
achieve, unless the original data is approximated in
order to reduce the number of geometric primitives that
need to be rendered. This problem is particularly
prevalent in applications dealing with large polygonal
surface models, such as digital terrain modeling and
visual simulation.

The paper addresses the above problems by introducing
an efficient and easy to implement algorithm for
visualization of large scale terrain models in real-time.
The quality and smoothness of terrain data visualization
within a 3D interactive environment is preserved, while
the complexity of the algorithm is kept on the

reasonable level. The Real-Time Optimally Adapting
Mesh (ROAM) approach is used as an underlying
model. We introduce a number of efficient techniques
such as implicit coordinates method within the patch
array representing ROAM, the viewpoint dependent
triangle rendering method for dynamic Lev이 of Detail
(LOD) updates and some culling techniques. The
efficiency is confirmed by experiments conducted on
greyscale Digital Elevation Maps.

2. The Motivation

The two traditionally used techniques for surface
representation and visualization of terrain models are
the TIN (triangulated irregular network) [14], and the
uniform grid [5]. They are typically used to address
problem of mesh simplification, although having some
significant drawbacks preventing on-the-fly generation
of multiple levels of detail. TIN models, for eximple,
require a highly extensive computational effort for their
generation. Because TINs are non-uniform in nature,
surface following (e.g. for animation of objects on the
surface) and intersection (e.g. for collision detection,
selection, and queries) are hard to handle efficiently.
This factor is especially important in many applications,
s니ch as games and CAD, where dynamic deformations
of the mesh may occur. The most common drawback
of regular grid representations is that the
polygonalization is never optimal [7]. Large, flat surfaces
may require the same polygon density as small, rough
areas do. This problem may be alleviated by reducing
the overall complexity and applying temporal blending,
or morphing, between different levels of detail [12].
Some visual simulation systems handle transitions
between multiple levels of detail by "alpha blending,,

http://www.ijcc.org
mailto:niarina@cpsc.ucalgary.ca

112 International Journal of CAD/CAM Vol. 3, No. 2, pp. 111^117

two models during the transition period. Ferguson [4]
claims that such blending techniques between levels of
detail may be visually distracting, and dismisses a
method of Delaunay triangulation which smoothly
matches edges across areas of different resolution.
However, this method is inherently difficult to implement.

Another approach based on maintaining of Real-time
Optimally Adapting Meshes (ROAM) was introduced
by Lindstrom [7], and utilized by DeBerg and
Duchaineauy [2, 3]. The approach suggested in [7] is
based on a hierarchical quadtree technique. In order to
reduce the projected pixel en'or, the terrain is dynamically
triangulated in a bottom up fashion according to the
distance to the point of view. Since res이ution is
allowed to change smoothly, the result is a much better
image quality. However, this algorithm still has a room
for improvement. When the viewpoint is changing, the
triangulation is continuously updating, resulting in a
so-called "popping”. As the observer approaches an
area with detail information, this detail will suddenly
appear at a certain distance. Another problem, crucial
for ROAM algorithms, is controlling a smoothness and
quality of the rendered image. While many simplification
methods are mathematically viable, the level of detail
generation and selection are often not directly co니pled
with the screen-space error resulting from the
simplification.

lb eradicate these problems, a number of approaches
were suggested. A rapid geomoiphing algorithm,
performing top-down manipulations on the quadtree
data structure, was presented in [11]. A recently proposed
method of view-dependent refinement allows to build a
mesh with a small number of triangles that for a given
view is a good approximation of the original, dense
mesh [8]. Novel methods for ROAM optimization,
utilizing a variety of culling techniques, continue to
evolve [1,6, 8, 14]. As can be seen from the above
discussion, efficient and easy algorithms for displaying
complex geographical d이:a are still in hi응h demand,
and this paper introd니ces one of them and discusses its
performance on an example of real-time visualization
of 3D Digital Elevation Models.

3. The Proposed Approach

Real-time Optimally Adapting Mesh (ROAM) method
is selected as an extendable, efficient tool for internal
data representation and dynamical updates of the terrain
model. The method is extended with an original implicit
coordinates method within the patch array and the
viewpoint dependent triangle rendering method for
dynamic level of detail (LOD) charges. The method is
characterized by the following set of 니nique features:

・ Smooth, continuous changes between different
surface levels of detail

, Dynamic generation of levels of detail in real-time
, Introduction of implicit coordinates method within

the patch array for more efficient ROAM
representation

• Introduction of the viewpoint dependent triangle
rendering method for dynamic level of detail (LOD)
니 pdates

• Implementation of culling techniques, including the
original Relational Position culling for more efficient
terrain rendering

• Flexibility in choosing/selecting various culling
techniques

• Reduction in the amount of time required to achieve
a given triangle count

• Application of error metrics for increased smoothness
and continuity

The teirain data sets studied are the simple gradual
contour changes and the complex steep contour changes,
represented by greyscale Digital Elevation Maps of
1024 pixels by 1024 pixels. Each experimental set is
internally represented by three quadrant detail levels,
corresponding to 16, 64 and 128 nodes per side within
the binary tree struemre. The load time, the total
number of triangles per path, the total number of culled
triangles per path, the number of frames per second and
the number of triangles per frame are examined for this
structure. The occlusions culling techniq니es are
individually and collectively combined with ROAM
technique and examined with the different representations
of detail levels to verify the algorithm feasibility and
efficiency.

3.1. Digital Elevation Model (DEM)
Digital Elevation Model (DEM) can refer either to a

specific elevation file format or to sources of elevation
data in general. DEM data is usually stored as an array
of regularly spaced elevation values, referenced
horizontally either to a Universal Transverse Mercator
(UTM) projection or to a geographic coordinate system.
The grid cells are spaced at regulai* intervals along
south to north profiles that are ordered from west to
east. A standard grid posting is interpolated directly
from the contour files to create DEMs with 10 - 90
meter (<1 - 3 arc second) resolution (depending on the
source paper map scale or contour interval) [10]. Two
greyscale Digital Elevation Model (DEM), representing
progressive contours with gradual elevation changes
and sudden steeper elevation changes (Fig. 1) were
studied.

3.2. Real-time terrain rendering algorithm
Our approach to tenain data rendering is based on

the Real-time Optimally Adapting Mesh (ROAM)
method (see [7]). The method presents a highly flexible
and adaptable method for representing continuous mesh
with controlled Level of Detail. It allows controlling the
details of a mesh and to maximize the q니ality and
minimize the number of triangle primitives used in the
process. The ROAM-based system constructs a consistent

Michael Hesse and Marina L. Gavrilova An Efficient Algorithm for Real-Time 3D Teirain Walkthrough 113

Fig. 1. Gradual elevation changes (left) and steep elevation changes (「i은hl).

and dynamic detail representations of terrain data by
utilization of two main priority queues. They are driven
by split and merge operations that adjust the terrain
detail level dynamically. The split and merge functions
ai*e both built and changed from the data information
held within a preprocessed Binary Triangle Tree data
structure. We suggest to use the implicit coordinates
method within an airay of patch objects for memory
conservation. In addition, we use a specific viewpoint
dependent triangle procedure to reduce the total amount
of computations needed to render the terrain data. The
more detailed description of the 이응orithm is provided
below.

The Real-time Terrain Rendering Algorithm
1. Preprocessing step.

1.1 Build a Binary Triangle Tree data structure to
represent the geometric properties of the
rendered terrain.

2. Dynamic rendering step.
2.1 Create two queues, the split queue and the

merge queue, to keep the priorities for each
individual triangle in the mesh triangulation;

2.2 Implement the split and merge operations for
updating the l「ian은ulaled mesh.

2.3 Perform recursive, incremental update to real
time optimally adapting mesh, using the implicit
coordinates method within an array of patch
objects;

2.4 Optimize processing using the viewpoint
dependent triangle rendering method:

2.5 Perform updates for triangle strips affected by
the culling changes;

2.6 Implement error metric control.

3.3. Split and merge function
As it was mentioned above, the ROAM algorithm is

built around a Binary Tree structure that supplies
triangle information for the split and merge operations

[7]. Obtaining any level of triangulation from a sequence
of splits or merges can be done from any other
triangulation level. Two triangles that share the same
base and are on the same detail level are referred to as
a diamond. The split operation adds a new vertex at the
diamond center resulting in the creation of four new
right-isosceles triangles, which will increase the number
of triangles representing a terrain area. As the number
of triangles increase, the detail level that can be
represented will also increase. The merge operation
works inversely to the split operation.

In our implementation, the split and merge operations
provide a flexible framework for making detailed updates
to the triangulated mesh (Fig. 2). The basic idea of
each queue is to keep the priorities for each individual
triangle in the mesh triangulation. The split operations
would then stai't with the base triangulation level in the
queue and then repeatedly split the triangle until the
highest priority triangle is reached. The only requirement
for the split priority queue is that the child's pri이ity
level must not be more than its parent's. The merge
priority queue allows the merge operation to start from
the previously rendered mesh triangulation. This allows
a more consistent and quicker frame-to-frame coherence.

Fig. 2. Split and me「은e opennions.

114 International Journal of CAD/CAM Vol. 3, No. 2, pp. 111-117

3.4. Implicit coordinates method
In our implementation, patches of triangles are used

to create and manage the mesh approximation within
the terrains landscape. We introduce the implicit
coordinates method within an array of patch objects to
ensure more efficient memory usage. The method is
based on the following idea. Instead of storing
explicitly X, Y and Z coordinates for each vertex of a
triangle, implicit coordinates, within the landscape, are
stored for the isosceles right triangles that will be
rendered onscreen. The advantage of this approach is
that implicitly defining coordinates saves 36 bytes of
RAM per triangle. An index within the patch array
references an individual Binary Triangle Tree that in
turn stores the references to each triangle level of detail
for that patch. The size of the patch determines the
relative size of each patch within the landscape. The
patch objects are held within the Landscape object. The
landscape object is built by combining each patch
section until the entire terrain is rendered.

3.5. Viewpoint dependent triangle rendering
A conventional method to reduce the amount of

computations needed to render a complex scene is to
apply Level of Detail (LOD) techniques. LOD method
detennine which sections of rendered mesh require less
detail based on any number of criteria. In this paper, we
extend the LOD technique with the viewpoint dependent
triangle rendering method. The method allows more
flexible information storage for dynamic and interactive
first person view rendering. We allow portions of the
terrain that are currently too far away to be rendered
with few triangles, and the same sections of terrain to
be rendered with more triangles if the viewpoint moves
closer. This is done by examining the field of view with
the view frustum to determine which patch sections
need more detail due to their proximity to the user.

Fig. 3. Binary triangle tree data structure.

3.6. Recursive bintree data structure
To satisfy the LOD requirement a binary triangle tree

structure will be used to hold the various levels of
detail that is needed by the graphics-rendering engine.
In the case of ROAM, a binary triangle tree structure,
or a bintree, is a recursive structure where, at its lowest
level, represents a right-isosceles triangle (see Fig. 3).
In our implementation, each patch of terrain will have
an individual bintree to define the triangle detail levels.
The triangle bintree structure starts with the base
terrain, either the least detail representation or the detail
level from the previously rendered image, in the leaf
components of the structure. The need for a change in
detail level is determined by examining the corresponding
error metrics.

4. Improving Rendering Quality

Data wiling is a process of selecting, from the whole
scene, particular information that needs to be rendered.
Culling at this level is often achieved by using geometry
based methods to determine which scene information
needs to be rendered. We implement three types of
geometric (filing algorithms to improve smoothness and
reduce “popping”： View Frustum Culling, Backface
Culling and an original Relational Culling technique
(see Fig. 4 and Fig. 5). As far as we know, this is the
first study that performs detailed comparison analysis
of a variety of culling methods in application to
different GIS data.

The view frustum is the volume of space that includes
everything that is currently visible from a given
viewpoint. Six planes arranged in the shape of a
pyramid with the top removed, define the view frustum
area. If a point or object is inside this volume then it is
within the frustum area and is potentially visible. If a
point is outside of the frustum then it is not visible to
the 니ser, it needs not be rendered. To determine the
position of the points and object, their bounding
volumes are computed. If the bounding volume lies on

Fig. 4. Sample culling of rendered terrain.

Michael Hesse and Marina L. Gavrilova An Efficient Algorithm for Real-Time 3D Terrain Walkthrough 115

Fig. 5. Sample meshin응 of rendered terrain.

one of the frustum edges then that bounding volume is
further subdivided into smaller bounding volumes until
each object is either determined to be inside or outside
the frustum area. If at the lowest detail level an object
still lies on a frustum edge, the portion of the object
inside the frustum area is rendered while the rest is
culled.

Historically, the geometric shapes used as bounding
volumes are boxes, or spheres, that are quicker to test
and require less memory to store. They also require
only four floating-point numbers for representation, while
a bounding box requires eight. The disadvantage of a
bounding sphere is sometimes it needs to be very large
to surround an object that could be easy encompassed
by a bounding box. To rectify this disadvantage, we
link multiple bounding spheres in a chain to better
simulate the object shapes.

We store the essential information described by the
bo니nding spheres in the hierai*chies of bounding volumes
as a Direct Acyclic Graph (DAG). This structure will
allow for q니ick and easy access of object information
based on their relative positions. Modeling is done
using OpenGL environment io extract the six planes of
the cuiTent view fnistum by retrieving the current
PROJECTION and MODELVIEW matrices, combining
the two, and then extracting the frustum values from
the resulting matrix. Our algorithm results in four
numbers that can represent the six planes. A point is
within the view frustum if it is in front of all six planes
simultaneously. To determine if a patch is within the
view frustum a bounding box approach is utilized. The
eight corners of the patch box are used to determine if
the patch should be rendered or not rendered based on
the same procedure as identifying if a point is with the
view frustum.

The second method that we implement in this project
is the backface culling. Based on a user's eye-space,
back-facing polygons are located on the far side of an
opaque object. These polygons, although part of the
viewer's scene, are not visible to the viewer and do not
need to be rendered. Once the polygons are determined

to be back-facing, they can be culled before the scene
is rendered. We calculate the normal of the projected
polygon to determine if it is back-facing. This test
involves calculating the polygon's normal and the
vector formed from the viewing point to any point on
the polygon.

The third technique that we introduce is the original
relational position culling technique, based on pre
processing the terrain landscape into patches. Each
patch would contain the Binary Triangle Tree structure
of its terrain data and store each triangle's detail
information within its node. Additionally, a visibility
flag is stored to determine which patch is seen within
the view frustum. This approach is developed to quickly
cut the generalized unnecessary teiTain data from the
terrain data set. Initially, the algorithm determines the
frustum triangle corners from a two-dimensional (2D)
view frustum, which gives the algorithm the user and
user's viewpoint's positions. These three points are used
to determine the minimal rectangle that encompasses
the 2D view frustum. Any points not within this rectangle
are immediately culled. Advantages of this method are
its simplicity and performance, that are discussed in the
previous work [6] by the authors.

5. Algorithm Performance Analysis

The main contribution of this work is in the
development of an efficient and adaptive real-time
rendering algorithm based on ROAM technique,
combined with a number of methods for increased
rendering speed, smoothness and realism. The algorithms
were implemented in Open GL.

When examining the results from the experiments,
several relationships were observed. One of the most
notable observations was the change of the number of
frames per second (frame rate) during each of the paths
corresponding step. Fig. 6 demonstrates the change in
frame rate with all three culling techniques (View
Frustum, Position based and Backface c니lling) enabled
with three distinct patch sizes represented by their
corresponding array size. The size-16 frame rate
performs as expected with the graph trend line remaining
rather flat and consistent throughout the entire
experimental path, except for its initial load up stage,
which is completed by the 25th frame. The size-64
frame rate demonstrates some interesting qualities. The
first 100 frames em니lates a similar pattern as the size-
16 trend line with the exception of a consistently lower
frame rate due to the increase of the number of patches
that need to be rendered. The size-64 trend illustrates a
significant increase in frame rate fmm frame 100 to
170. The increase corresponds to the first set of constant
right and left hand turns in the experimental path that
lasts until frame 161. Note that there are no significant
differences in the number of frames rendered per
second for different terrain models.

116 International Journal of CAD/CAM Vol. 3, No. 2, pp. 111-117

6
U
O
0
O
S

一
 으

七한

丄

Frames per Second - steep contour

Size 16
Size 64
Size 128

6
U
O
Q
O
S

一O

E
 요

Frames

Fig. 6・ Number of frames per seconds for two models.

——Size 16
-Size 64

Size 128

This set of turns can also be seen when examining
Fig. 7 for both terrain models. The decrease in triangles
per frame corresponds to the first left hand turn during
a specific path over the terrain, most likely due to the
quick pace of the turn and the difficultly of the
rendering engine to propagate the necessary triangle
detail levels before the next turn begins. As each turn is
performed, the viewed landscapes true detail level is
reduced. The number of triangles per frame continues
to reduce as the turn progresses. This is the result of the
view frustum larg이y shifting out of the frame of view.
The trend line flattens as the forward movement allows
the rendering engine time to increase the detail level of
each frame, d니e to the limited changes in the view
frustum.

The rise of the size-64 trend line frame 180 is due to
quick left and right turns which would leave the middle
section of the view frustum untouched with only the
frustum edges needing to be recomputed. The largest
increase in the size 一 64's trend line is due to the
experimental path moving directly backwards (back
stepping), which significantly decreases the amount of
the view frustum that must be recomputed.

Now, consider the time complexity of the algorithm.
Analysis of time required for split and merge functions
is quite interesting. It was anticipated that there would
be an eq니al shai'ing of time between both the split and

s 읆
 u 뜨.

L
L

Number of Triangles Rendered per
Frame - steep contour changes

Size 16
Size 64
Size 128

s

음

 u

 흐

」」.

Number of Triangles Rendered per
Frame - gradual contour changes

Fig. 7. Number of triangles rendered per frame for two models.

Size 16
Size 64
Size 128

merge functions. That is, as one set of triangles needs
to be split it w이ild cause another set of triangles to
congi,니ently be merged adjusting to meet the overall set
triangle detail level. When the application is examined
in further detail, this is not always the case. Initially, as
the triangles propagate through the landscape to their
set detail level there is a relatively equal amount of
time being spent in both algorithms. Interestingly, this
is not the case when the culling techniq니es are active.
In this case, a higher proportion of application time is
spent in the split function and is directly related to the
number of triangles being rendered per frame. Fig. 7,
and the movement of the view frustum. When a patch
is culled from a the frustum, it has some detail level of
rendered triangles. These triangles are elimin기:ed without
the use of the merge algorithm. This elimination of
triangles allows the application to split new triangles on
the new patches entering the frustum without increasing
the overall triangle detail level. As the movement of the
frustum increases with consecutive turns, this relationship
becomes even more prono니need.

This observation helps to clarify the relationship
between the number of triangles per frames and the
movement of the frustum seen is Fig. 7. As the movement
of the frustum becomes more continuous there is a
reduction in the number of triangles being rendered per
frame. This would be directly related to the disappearance
of the rendered patches, with some triangle detail level,
being eliminated the frustum view and the appearance
of new patches, with lowest detail level, being brought

Michael Hesse and Marina L. Gavrilova An Efficient Algorithm for Real-Time 3D Terrain Walkthrough 117

into view. As the turn becomes more continuous, the
greater the number of patches that is eliminated and the
higher the demand on the split algorithm.

The time efficiency of the algorithm is also related to
the size of the patch set. It also explains the algorithm
behaviour for Size-16 and Size-64 patch sizes in Fig. 7.
Since the Size-16 patches are larger, there is a greater
area outside the view fmst니m being rendered. This
wasted rendering area would act as a frustum buffer.
Even though the patches would be eliminated at the
same pace as a smaller patch size fmstum, Size-64,
these larger patches would have the smallest amount of
detail on the portions of the patch that are outside the
frustum site lines. Therefore the elimination of these
patches will have less effect on the number of triangles
being rendered per frame. This relationship also adjusts
the time usage relationship between the split and merge
algorithms. Due to the frustum buffer the merge function
has time to adjust the triangle detail lev이 of the patch
that will be eliminated. This triangle merge reduction
allows the split algorithm more time to readjust triangle
detail level before the jolt of having the entire patch
eliminated. As the patch size becomes smaller the
adjustment time for the mer응e algorithm becomes less
and the split algorithm more dominant.

6. Conclusions

The main contribution of this work is in the
development of an efficient and adaptive real-time
rendering algorithm based on ROAM technique,
combined with a number of methods for increased
rendering speed, smoothness and re시ism. Examining
both the number of frames per second and the number
of triangles per frame suggests a number of conchjsions
to be drawn. When investigating the experimental
path's frame rates with all of the culling techniques
active, we show that the patch sizes within the landscapes
are significantly related to the change of frustum
position. This correlation is confirmed by examining
the number of triangle rendered per frame.

This paper also explored the time efficiency of the
split and merge algorithms. The experimentation
demonstrated that patch size has a correlation between
the times bein응 spent in each algorithm. Larger patch
sizes effectively provide frustum buffer. As the patch
size becomes smaller, the merge 이gorithm becomes
less effective but the split function become more in
demand due the rapid removal of patch with lar응e
detail levels. These results provide a unique inside view
on the correlation between the different mechanisms,
incorporated together in the presented algorithm for

realistic and efficient terrain representation and the
real-time level of detail reduction. Further investigation
of culling techniques and error metrics for improved
visualization res니Its for different types of rendered
ten'ain mod이s is planned.

Acknowledgements

Authors wo니d like to express their gratitude to
GEOIDE and NSERC granting agencies for their
partial support of this project.

References

[1] Blow, J. (2000), 'Terrain Rendering at High Levels of
Detail," Game Developers' Conference, San Jose,
California, USA.

[2] De Berg, M. and Dobrint, K. (1995). “On levels of detail
in terrains/' Proc. I l,h ACM Symposium on Computational
Geometiy, ACM Press, C26-C27.

|3] Duchaineauy, M. et al. (1997), "ROAMing Terrain: Real-
Time Optimally Adapting Meshes," IEEE Visualization
'97 Proceeding, 81 -88.

[4] Ferguson, R., Economy. R.. Kelly, W. and Ramos P.
(1990), "Continu이x Terrain Level of Detail for Visu시

Simulation/' IMAGE V Conference, 144-151.
[5] Gross, M. H., Gatti, R. and Staadt, O. (1995), “Fast

Multiresolution Surface, Meshing," Proceedings of
Visualization ‘95、135-142.

[6] Hesse, M. and Gavrilova, M. (2003), "'Quantitative
Analysis of (Lalling Techniques for Re이-time Renderin은

of Digital Elevation Models," WSCG 2003、Science Press,
130-137.

[7] Lindstrom, P. and Koller, D. (1996), “Real-time
continuous level of detail rendering of height fields,、’

Computer Graphics、SIGGRAPH J996, 109-118.
[81 Lindstrom, P. and Pascucci, V. (2002), "Terrain

Simplification Simplified: A General Framework for View-
Dependent Oiit-of-C이"e Visualization? IEEE Visualiz.
and Comp. Graphics, 8(3), 239-254.

【이 Lloyd, B. and Egbert, P. (2002), “Horizon Occlusion
Culling for Real-time Rendering of Hieraichical RiTaiiis."
IEEE Visualization 2002, Boston, Massachusetts.

[1 이 National Mapping Division, U.S.Geological Suivey, US
GeoD시a Dig. Elev. Models.

111] Rottger, S., Heidrich, W.、Slusallek. R and Seidel. H.
(1998), "Real-Time Generation of Continuous Levels of
Detail for Heighl Fields," WSCG*08, 315-322.

[12] Taylor, D. C. and Barret, W. A. (1994). “An Algoridim for
Continuous Resolution, Polygonalizations of a Discrete
Surface," Graphics Inteiface, 94, 33-42.

[13] VTP Virtual Temiin Project,
index.html.

http://www.vterrain.org/

[14] Zhao, Y, Zhou, Y., Shi, J. and Pan, Z. (20이), “A Fast
Algorithm for Large Scale Tenain Walkthrough.” CAD/
Graphics '2001. International Academic Publishers.

http://www.vterrain.org/

