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Abstract 一 The paper presents an efficient algorithm based on ROAM for visualization of large scale terrain models in real
time. The quality and smoothness of the terrain data visualization within a 3D interactive environment is preserved, while the 
complexity of the algorithm is kept on a reasonable level. The main contribution of the paper is an introduction of a number 
of efficient techniques such as implicit coordinates method within the patch array representing ROAM and the viewpoint 
dependent tiiangle rendering method for dynamic level of detail (LOD) updates. In addition, the paper presents experimental 
comparison of a variety of culling techniques, including a newly introduced method: relational position culling. These 
techniques are incorporated in the visualization software, which allows to achieve more realistic terrain representation and the 
real-time level of detail reduction.
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1. Introduction

High quality rendering and meshing techniques for 
displaying complex geographical data, such as terrain 
mod이s, play an important role in the ftist growing 
domain of CAD oriented towards Geographic Information 
Systems (GIS). According to a recent review, conducted 
as a part of Virtual Terrain Project on convergence of 
the fields of CAD, GIS and visual simulation [13], 
even today the vast majority of CAD is only 2D 
blueprints, not 3D models. The conversion from 2D to 
3D is generally a difficult process requiring highly 
efficient algorithms, and there are practically no freely 
available tools for 3D CAD that could be useful in GIS. 
In addition, for exploring different kinds of geographic
based data sets on screen it is necessary to display data 
at interactive frame rates. Because of the inherent 
geometric complexity, this goal is often hard to 
achieve, unless the original data is approximated in 
order to reduce the number of geometric primitives that 
need to be rendered. This problem is particularly 
prevalent in applications dealing with large polygonal 
surface models, such as digital terrain modeling and 
visual simulation.

The paper addresses the above problems by introducing 
an efficient and easy to implement algorithm for 
visualization of large scale terrain models in real-time. 
The quality and smoothness of terrain data visualization 
within a 3D interactive environment is preserved, while 
the complexity of the algorithm is kept on the 

reasonable level. The Real-Time Optimally Adapting 
Mesh (ROAM) approach is used as an underlying 
model. We introduce a number of efficient techniques 
such as implicit coordinates method within the patch 
array representing ROAM, the viewpoint dependent 
triangle rendering method for dynamic Lev이 of Detail 
(LOD) updates and some culling techniques. The 
efficiency is confirmed by experiments conducted on 
greyscale Digital Elevation Maps.

2. The Motivation

The two traditionally used techniques for surface 
representation and visualization of terrain models are 
the TIN (triangulated irregular network) [14], and the 
uniform grid [5]. They are typically used to address 
problem of mesh simplification, although having some 
significant drawbacks preventing on-the-fly generation 
of multiple levels of detail. TIN models, for eximple, 
require a highly extensive computational effort for their 
generation. Because TINs are non-uniform in nature, 
surface following (e.g. for animation of objects on the 
surface) and intersection (e.g. for collision detection, 
selection, and queries) are hard to handle efficiently. 
This factor is especially important in many applications, 
s니ch as games and CAD, where dynamic deformations 
of the mesh may occur. The most common drawback 
of regular grid representations is that the 
polygonalization is never optimal [7]. Large, flat surfaces 
may require the same polygon density as small, rough 
areas do. This problem may be alleviated by reducing 
the overall complexity and applying temporal blending, 
or morphing, between different levels of detail [ 12]. 
Some visual simulation systems handle transitions 
between multiple levels of detail by "alpha blending,, 
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two models during the transition period. Ferguson [4] 
claims that such blending techniques between levels of 
detail may be visually distracting, and dismisses a 
method of Delaunay triangulation which smoothly 
matches edges across areas of different resolution. 
However, this method is inherently difficult to implement.

Another approach based on maintaining of Real-time 
Optimally Adapting Meshes (ROAM) was introduced 
by Lindstrom [7], and utilized by DeBerg and 
Duchaineauy [2, 3]. The approach suggested in [7] is 
based on a hierarchical quadtree technique. In order to 
reduce the projected pixel en'or, the terrain is dynamically 
triangulated in a bottom up fashion according to the 
distance to the point of view. Since res이ution is 
allowed to change smoothly, the result is a much better 
image quality. However, this algorithm still has a room 
for improvement. When the viewpoint is changing, the 
triangulation is continuously updating, resulting in a 
so-called "popping”. As the observer approaches an 
area with detail information, this detail will suddenly 
appear at a certain distance. Another problem, crucial 
for ROAM algorithms, is controlling a smoothness and 
quality of the rendered image. While many simplification 
methods are mathematically viable, the level of detail 
generation and selection are often not directly co니pled 
with the screen-space error resulting from the 
simplification.

lb eradicate these problems, a number of approaches 
were suggested. A rapid geomoiphing algorithm, 
performing top-down manipulations on the quadtree 
data structure, was presented in [11]. A recently proposed 
method of view-dependent refinement allows to build a 
mesh with a small number of triangles that for a given 
view is a good approximation of the original, dense 
mesh [8]. Novel methods for ROAM optimization, 
utilizing a variety of culling techniques, continue to 
evolve [1,6, 8, 14]. As can be seen from the above 
discussion, efficient and easy algorithms for displaying 
complex geographical d이:a are still in hi응h demand, 
and this paper introd니ces one of them and discusses its 
performance on an example of real-time visualization 
of 3D Digital Elevation Models.

3. The Proposed Approach

Real-time Optimally Adapting Mesh (ROAM) method 
is selected as an extendable, efficient tool for internal 
data representation and dynamical updates of the terrain 
model. The method is extended with an original implicit 
coordinates method within the patch array and the 
viewpoint dependent triangle rendering method for 
dynamic level of detail (LOD) charges. The method is 
characterized by the following set of 니nique features:

・ Smooth, continuous changes between different 
surface levels of detail

, Dynamic generation of levels of detail in real-time
, Introduction of implicit coordinates method within 

the patch array for more efficient ROAM 
representation

• Introduction of the viewpoint dependent triangle 
rendering method for dynamic level of detail (LOD) 
니 pdates

• Implementation of culling techniques, including the 
original Relational Position culling for more efficient 
terrain rendering

• Flexibility in choosing/selecting various culling 
techniques

• Reduction in the amount of time required to achieve 
a given triangle count

• Application of error metrics for increased smoothness 
and continuity

The teirain data sets studied are the simple gradual 
contour changes and the complex steep contour changes, 
represented by greyscale Digital Elevation Maps of 
1024 pixels by 1024 pixels. Each experimental set is 
internally represented by three quadrant detail levels, 
corresponding to 16, 64 and 128 nodes per side within 
the binary tree struemre. The load time, the total 
number of triangles per path, the total number of culled 
triangles per path, the number of frames per second and 
the number of triangles per frame are examined for this 
structure. The occlusions culling techniq니es are 
individually and collectively combined with ROAM 
technique and examined with the different representations 
of detail levels to verify the algorithm feasibility and 
efficiency.

3.1. Digital Elevation Model (DEM)
Digital Elevation Model (DEM) can refer either to a 

specific elevation file format or to sources of elevation 
data in general. DEM data is usually stored as an array 
of regularly spaced elevation values, referenced 
horizontally either to a Universal Transverse Mercator 
(UTM) projection or to a geographic coordinate system. 
The grid cells are spaced at regulai*  intervals along 
south to north profiles that are ordered from west to 
east. A standard grid posting is interpolated directly 
from the contour files to create DEMs with 10 - 90 
meter (<1 - 3 arc second) resolution (depending on the 
source paper map scale or contour interval) [10]. Two 
greyscale Digital Elevation Model (DEM), representing 
progressive contours with gradual elevation changes 
and sudden steeper elevation changes (Fig. 1) were 
studied.

3.2. Real-time terrain rendering algorithm
Our approach to tenain data rendering is based on 

the Real-time Optimally Adapting Mesh (ROAM) 
method (see [7]). The method presents a highly flexible 
and adaptable method for representing continuous mesh 
with controlled Level of Detail. It allows controlling the 
details of a mesh and to maximize the q니ality and 
minimize the number of triangle primitives used in the 
process. The ROAM-based system constructs a consistent
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Fig. 1. Gradual elevation changes (left) and steep elevation changes (「i은hl).

and dynamic detail representations of terrain data by 
utilization of two main priority queues. They are driven 
by split and merge operations that adjust the terrain 
detail level dynamically. The split and merge functions 
ai*e  both built and changed from the data information 
held within a preprocessed Binary Triangle Tree data 
structure. We suggest to use the implicit coordinates 
method within an airay of patch objects for memory 
conservation. In addition, we use a specific viewpoint 
dependent triangle procedure to reduce the total amount 
of computations needed to render the terrain data. The 
more detailed description of the 이응orithm is provided 
below.

The Real-time Terrain Rendering Algorithm
1. Preprocessing step.

1.1 Build a Binary Triangle Tree data structure to 
represent the geometric properties of the 
rendered terrain.

2. Dynamic rendering step.
2.1 Create two queues, the split queue and the 

merge queue, to keep the priorities for each 
individual triangle in the mesh triangulation;

2.2 Implement the split and merge operations for 
updating the l「ian은ulaled mesh.

2.3 Perform recursive, incremental update to real
time optimally adapting mesh, using the implicit 
coordinates method within an array of patch 
objects;

2.4 Optimize processing using the viewpoint 
dependent triangle rendering method:

2.5 Perform updates for triangle strips affected by 
the culling changes;

2.6 Implement error metric control.

3.3. Split and merge function
As it was mentioned above, the ROAM algorithm is 

built around a Binary Tree structure that supplies 
triangle information for the split and merge operations 

[7]. Obtaining any level of triangulation from a sequence 
of splits or merges can be done from any other 
triangulation level. Two triangles that share the same 
base and are on the same detail level are referred to as 
a diamond. The split operation adds a new vertex at the 
diamond center resulting in the creation of four new 
right-isosceles triangles, which will increase the number 
of triangles representing a terrain area. As the number 
of triangles increase, the detail level that can be 
represented will also increase. The merge operation 
works inversely to the split operation.

In our implementation, the split and merge operations 
provide a flexible framework for making detailed updates 
to the triangulated mesh (Fig. 2). The basic idea of 
each queue is to keep the priorities for each individual 
triangle in the mesh triangulation. The split operations 
would then stai't with the base triangulation level in the 
queue and then repeatedly split the triangle until the 
highest priority triangle is reached. The only requirement 
for the split priority queue is that the child's pri이ity 
level must not be more than its parent's. The merge 
priority queue allows the merge operation to start from 
the previously rendered mesh triangulation. This allows 
a more consistent and quicker frame-to-frame coherence.

Fig. 2. Split and me「은e opennions.
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3.4. Implicit coordinates method
In our implementation, patches of triangles are used 

to create and manage the mesh approximation within 
the terrains landscape. We introduce the implicit 
coordinates method within an array of patch objects to 
ensure more efficient memory usage. The method is 
based on the following idea. Instead of storing 
explicitly X, Y and Z coordinates for each vertex of a 
triangle, implicit coordinates, within the landscape, are 
stored for the isosceles right triangles that will be 
rendered onscreen. The advantage of this approach is 
that implicitly defining coordinates saves 36 bytes of 
RAM per triangle. An index within the patch array 
references an individual Binary Triangle Tree that in 
turn stores the references to each triangle level of detail 
for that patch. The size of the patch determines the 
relative size of each patch within the landscape. The 
patch objects are held within the Landscape object. The 
landscape object is built by combining each patch 
section until the entire terrain is rendered.

3.5. Viewpoint dependent triangle rendering
A conventional method to reduce the amount of 

computations needed to render a complex scene is to 
apply Level of Detail (LOD) techniques. LOD method 
detennine which sections of rendered mesh require less 
detail based on any number of criteria. In this paper, we 
extend the LOD technique with the viewpoint dependent 
triangle rendering method. The method allows more 
flexible information storage for dynamic and interactive 
first person view rendering. We allow portions of the 
terrain that are currently too far away to be rendered 
with few triangles, and the same sections of terrain to 
be rendered with more triangles if the viewpoint moves 
closer. This is done by examining the field of view with 
the view frustum to determine which patch sections 
need more detail due to their proximity to the user.

Fig. 3. Binary triangle tree data structure.

3.6. Recursive bintree data structure
To satisfy the LOD requirement a binary triangle tree 

structure will be used to hold the various levels of 
detail that is needed by the graphics-rendering engine. 
In the case of ROAM, a binary triangle tree structure, 
or a bintree, is a recursive structure where, at its lowest 
level, represents a right-isosceles triangle (see Fig. 3). 
In our implementation, each patch of terrain will have 
an individual bintree to define the triangle detail levels. 
The triangle bintree structure starts with the base 
terrain, either the least detail representation or the detail 
level from the previously rendered image, in the leaf 
components of the structure. The need for a change in 
detail level is determined by examining the corresponding 
error metrics.

4. Improving Rendering Quality

Data wiling is a process of selecting, from the whole 
scene, particular information that needs to be rendered. 
Culling at this level is often achieved by using geometry
based methods to determine which scene information 
needs to be rendered. We implement three types of 
geometric (filing algorithms to improve smoothness and 
reduce “popping”： View Frustum Culling, Backface 
Culling and an original Relational Culling technique 
(see Fig. 4 and Fig. 5). As far as we know, this is the 
first study that performs detailed comparison analysis 
of a variety of culling methods in application to 
different GIS data.

The view frustum is the volume of space that includes 
everything that is currently visible from a given 
viewpoint. Six planes arranged in the shape of a 
pyramid with the top removed, define the view frustum 
area. If a point or object is inside this volume then it is 
within the frustum area and is potentially visible. If a 
point is outside of the frustum then it is not visible to 
the 니ser, it needs not be rendered. To determine the 
position of the points and object, their bounding 
volumes are computed. If the bounding volume lies on

Fig. 4. Sample culling of rendered terrain.
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Fig. 5. Sample meshin응 of rendered terrain.

one of the frustum edges then that bounding volume is 
further subdivided into smaller bounding volumes until 
each object is either determined to be inside or outside 
the frustum area. If at the lowest detail level an object 
still lies on a frustum edge, the portion of the object 
inside the frustum area is rendered while the rest is 
culled.

Historically, the geometric shapes used as bounding 
volumes are boxes, or spheres, that are quicker to test 
and require less memory to store. They also require 
only four floating-point numbers for representation, while 
a bounding box requires eight. The disadvantage of a 
bounding sphere is sometimes it needs to be very large 
to surround an object that could be easy encompassed 
by a bounding box. To rectify this disadvantage, we 
link multiple bounding spheres in a chain to better 
simulate the object shapes.

We store the essential information described by the 
bo니nding spheres in the hierai*chies  of bounding volumes 
as a Direct Acyclic Graph (DAG). This structure will 
allow for q니ick and easy access of object information 
based on their relative positions. Modeling is done 
using OpenGL environment io extract the six planes of 
the cuiTent view fnistum by retrieving the current 
PROJECTION and MODELVIEW matrices, combining 
the two, and then extracting the frustum values from 
the resulting matrix. Our algorithm results in four 
numbers that can represent the six planes. A point is 
within the view frustum if it is in front of all six planes 
simultaneously. To determine if a patch is within the 
view frustum a bounding box approach is utilized. The 
eight corners of the patch box are used to determine if 
the patch should be rendered or not rendered based on 
the same procedure as identifying if a point is with the 
view frustum.

The second method that we implement in this project 
is the backface culling. Based on a user's eye-space, 
back-facing polygons are located on the far side of an 
opaque object. These polygons, although part of the 
viewer's scene, are not visible to the viewer and do not 
need to be rendered. Once the polygons are determined 

to be back-facing, they can be culled before the scene 
is rendered. We calculate the normal of the projected 
polygon to determine if it is back-facing. This test 
involves calculating the polygon's normal and the 
vector formed from the viewing point to any point on 
the polygon.

The third technique that we introduce is the original 
relational position culling technique, based on pre
processing the terrain landscape into patches. Each 
patch would contain the Binary Triangle Tree structure 
of its terrain data and store each triangle's detail 
information within its node. Additionally, a visibility 
flag is stored to determine which patch is seen within 
the view frustum. This approach is developed to quickly 
cut the generalized unnecessary teiTain data from the 
terrain data set. Initially, the algorithm determines the 
frustum triangle corners from a two-dimensional (2D) 
view frustum, which gives the algorithm the user and 
user's viewpoint's positions. These three points are used 
to determine the minimal rectangle that encompasses 
the 2D view frustum. Any points not within this rectangle 
are immediately culled. Advantages of this method are 
its simplicity and performance, that are discussed in the 
previous work [6] by the authors.

5. Algorithm Performance Analysis

The main contribution of this work is in the 
development of an efficient and adaptive real-time 
rendering algorithm based on ROAM technique, 
combined with a number of methods for increased 
rendering speed, smoothness and realism. The algorithms 
were implemented in Open GL.

When examining the results from the experiments, 
several relationships were observed. One of the most 
notable observations was the change of the number of 
frames per second (frame rate) during each of the paths 
corresponding step. Fig. 6 demonstrates the change in 
frame rate with all three culling techniques (View 
Frustum, Position based and Backface c니lling) enabled 
with three distinct patch sizes represented by their 
corresponding array size. The size-16 frame rate 
performs as expected with the graph trend line remaining 
rather flat and consistent throughout the entire 
experimental path, except for its initial load up stage, 
which is completed by the 25th frame. The size-64 
frame rate demonstrates some interesting qualities. The 
first 100 frames em니lates a similar pattern as the size- 
16 trend line with the exception of a consistently lower 
frame rate due to the increase of the number of patches 
that need to be rendered. The size-64 trend illustrates a 
significant increase in frame rate fmm frame 100 to 
170. The increase corresponds to the first set of constant 
right and left hand turns in the experimental path that 
lasts until frame 161. Note that there are no significant 
differences in the number of frames rendered per 
second for different terrain models.
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This set of turns can also be seen when examining 
Fig. 7 for both terrain models. The decrease in triangles 
per frame corresponds to the first left hand turn during 
a specific path over the terrain, most likely due to the 
quick pace of the turn and the difficultly of the 
rendering engine to propagate the necessary triangle 
detail levels before the next turn begins. As each turn is 
performed, the viewed landscapes true detail level is 
reduced. The number of triangles per frame continues 
to reduce as the turn progresses. This is the result of the 
view frustum larg이y shifting out of the frame of view. 
The trend line flattens as the forward movement allows 
the rendering engine time to increase the detail level of 
each frame, d니e to the limited changes in the view 
frustum.

The rise of the size-64 trend line frame 180 is due to 
quick left and right turns which would leave the middle 
section of the view frustum untouched with only the 
frustum edges needing to be recomputed. The largest 
increase in the size 一 64's trend line is due to the 
experimental path moving directly backwards (back 
stepping), which significantly decreases the amount of 
the view frustum that must be recomputed.

Now, consider the time complexity of the algorithm. 
Analysis of time required for split and merge functions 
is quite interesting. It was anticipated that there would 
be an eq니al shai'ing of time between both the split and
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merge functions. That is, as one set of triangles needs 
to be split it w이ild cause another set of triangles to 
congi,니ently be merged adjusting to meet the overall set 
triangle detail level. When the application is examined 
in further detail, this is not always the case. Initially, as 
the triangles propagate through the landscape to their 
set detail level there is a relatively equal amount of 
time being spent in both algorithms. Interestingly, this 
is not the case when the culling techniq니es are active. 
In this case, a higher proportion of application time is 
spent in the split function and is directly related to the 
number of triangles being rendered per frame. Fig. 7, 
and the movement of the view frustum. When a patch 
is culled from a the frustum, it has some detail level of 
rendered triangles. These triangles are elimin기:ed without 
the use of the merge algorithm. This elimination of 
triangles allows the application to split new triangles on 
the new patches entering the frustum without increasing 
the overall triangle detail level. As the movement of the 
frustum increases with consecutive turns, this relationship 
becomes even more prono니need.

This observation helps to clarify the relationship 
between the number of triangles per frames and the 
movement of the frustum seen is Fig. 7. As the movement 
of the frustum becomes more continuous there is a 
reduction in the number of triangles being rendered per 
frame. This would be directly related to the disappearance 
of the rendered patches, with some triangle detail level, 
being eliminated the frustum view and the appearance 
of new patches, with lowest detail level, being brought 
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into view. As the turn becomes more continuous, the 
greater the number of patches that is eliminated and the 
higher the demand on the split algorithm.

The time efficiency of the algorithm is also related to 
the size of the patch set. It also explains the algorithm 
behaviour for Size-16 and Size-64 patch sizes in Fig. 7. 
Since the Size-16 patches are larger, there is a greater 
area outside the view fmst니m being rendered. This 
wasted rendering area would act as a frustum buffer. 
Even though the patches would be eliminated at the 
same pace as a smaller patch size fmstum, Size-64, 
these larger patches would have the smallest amount of 
detail on the portions of the patch that are outside the 
frustum site lines. Therefore the elimination of these 
patches will have less effect on the number of triangles 
being rendered per frame. This relationship also adjusts 
the time usage relationship between the split and merge 
algorithms. Due to the frustum buffer the merge function 
has time to adjust the triangle detail lev이 of the patch 
that will be eliminated. This triangle merge reduction 
allows the split algorithm more time to readjust triangle 
detail level before the jolt of having the entire patch 
eliminated. As the patch size becomes smaller the 
adjustment time for the mer응e algorithm becomes less 
and the split algorithm more dominant.

6. Conclusions

The main contribution of this work is in the 
development of an efficient and adaptive real-time 
rendering algorithm based on ROAM technique, 
combined with a number of methods for increased 
rendering speed, smoothness and re시ism. Examining 
both the number of frames per second and the number 
of triangles per frame suggests a number of conchjsions 
to be drawn. When investigating the experimental 
path's frame rates with all of the culling techniques 
active, we show that the patch sizes within the landscapes 
are significantly related to the change of frustum 
position. This correlation is confirmed by examining 
the number of triangle rendered per frame.

This paper also explored the time efficiency of the 
split and merge algorithms. The experimentation 
demonstrated that patch size has a correlation between 
the times bein응 spent in each algorithm. Larger patch 
sizes effectively provide frustum buffer. As the patch 
size becomes smaller, the merge 이gorithm becomes 
less effective but the split function become more in 
demand due the rapid removal of patch with lar응e 
detail levels. These results provide a unique inside view 
on the correlation between the different mechanisms, 
incorporated together in the presented algorithm for 

realistic and efficient terrain representation and the 
real-time level of detail reduction. Further investigation 
of culling techniques and error metrics for improved 
visualization res니Its for different types of rendered 
ten'ain mod이s is planned.
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