• Title/Summary/Keyword: reaction time

Search Result 6,858, Processing Time 0.03 seconds

Temporal Reaction of House Price Based on the Distance from Subway Station since Its Operation - Focused on 10-year Experience after Opening of the Daejeon Urban Transit Line - (개통 이후의 지하철역 거리에 기반한 주택가격의 시간적 반응 - 개통 후 10년의 대전 도시철도를 중심으로 -)

  • Kang, Jae-Won;Sung, Hyungun
    • Journal of Korea Planning Association
    • /
    • v.54 no.2
    • /
    • pp.54-66
    • /
    • 2019
  • This study analyzed whether a subway accessibility impact on house price is constant since its operation over time or not. The study was approached specifically to answer two research questions. One is "Are there significant temporal variations in the relationship between subway accessibility and housing price transacted after its opening?" The other one is "How the pattern of its temporal variation in housing price is formed as a function of the distance from the nearest station?" The study area is the subway station areas in the Daejeon metropolitan city, South Korea. Its first subway line has started to be opened in 2006 with 12 stations and then opened its additional 10 stations in 2007. It can be more appropriate to observe its impacts of subway accessibility on housing price because it has only one transit line with more than 10-year reaction term to its operation. The study employed alternative models to estimate yearly variation of subway accessibility on house price for the station areas with 500-meter and 1-kilometer radius respectively. While the study originally considered both a hedonic price model with interaction terms of its access distance to yearly transacted housing and a time-variant random coefficient model, the former model was finally selected because it is better fitted. Based on our analysis results, the reaction of house price to its transit line had significant temporal variation over time after opening. In addition, the pattern in its variation from our analysis results indicates that its capitalization impact on house price is over-estimated in its first several years after the opening. In addition, its positive capitalization impact is more effective in the 1000-meter station area than in the 500-meter one.

Prevalence of Bordetella bronchiseptica, Mycoplasma felis, and Chlamydia felis using a newly developed triplex real-time polymerase chain reaction assay in Korean cat population

  • Hye-Ryung, Kim;Gyu-Tae, Jeon;Jong-Min, Kim;Ji-Su, Baek;Yeun-Kyung, Shin;Oh-Kyu, Kwon;Hae-Eun, Kang;Ho-Seong, Cho;Doo-Sung, Cheon;Choi-Kyu, Park
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.4
    • /
    • pp.305-316
    • /
    • 2022
  • Bordetella (B.) bronchiseptica, Mycoplasma (M.) felis, and Chlamydia (C.) felis are considered as main bacterial pathogens of feline upper respiratory tract disease (URTD). In this study, a new triplex quantitative real-time polymerase chain reaction (tqPCR) assay was developed for the rapid and differential detection of these bacteria in a single reaction. The assay specifically amplified three bacterial genes with the detection limit of below 10 copies/reaction. The assay showed high repeatability and reproducibility, with coefficients of intra-assay and inter-assay variation of less than 1%. Based on the diagnostic results of the assay using 94 clinical samples obtained from cats with URTD signs, prevalence of B. bronchiseptica, M. felis, or C. felis was 10.6%, 36.2%, or 6.4%, respectively, indicating that the diagnostic sensitivity was comparable to those of previously reported monoplex qPCR assays. The dual infection rates for B. bronchiseptica and M. felis or M. felis and C. felis was 2.1% or 3.2%, respectively. These results indicated that M. felis has been widely spread, and its co-infection with B. bronchiseptica or M. felis has been frequently occurred in Korean cat population. The developed tqPCR assay will serve as a promising tool for etiological and epidemiological studies of these three bacterial pathogens and the prevalence data obtained in this study will contribute to expanding knowledge about the epidemiology of feline URTD in Korea.

Furfural Production From Xylose by Using Formic Acid and Sulfuric Acid (포름산 및 황산 촉매를 이용한 자일로스로부터 푸르푸랄 생산)

  • Lee Seungmin ;Kim Jun Seok
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.561-569
    • /
    • 2023
  • Furfural is a platform chemical that is produced from xylose, one of the hemicellulose components of lignocellulosic biomass. Furfural can be used as an important feedstock for phenolic compounds or biofuels. In this study, we compared and optimized the conditions for producing furfural from xylose in a batch system using two types of catalysts: sulfuric acid, which is commonly used in the furfural production process, and formic acid, which is an environmentally friendly catalyst. We investigated the effects of xylose initial concentration (10 g/L~100 g/L), reaction temperature (140~200 ℃), sulfuric acid catalyst (1~3 wt%), formic acid catalyst (5~10 wt%), and reaction time on the furfural yield. The optimal conditions according to the type of catalyst were as follows. For sulfuric acid catalyst, 3 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 10min of reaction time resulted in a maximum furfural yield of 59.0%. For formic acid catalyst, 5 wt% of catalyst concentration, 50 g/L of xylose initial concentration, 180 ℃ of temperature, and 150 min of reaction time resulted in a furfural yield of 65.3%.

Synthesis of AlO(OH) Nano Colloids from γ-Al2O3 via Reversible Process (γ-Al2O3로부터 가역과정을 경유한 AlO(OH) 나노콜로이드의 합성)

  • Cho, Hyun-Ran;Kim, Sook-Hyun;Park, Byung-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.288-294
    • /
    • 2009
  • The platelet AlO(OH) nano colloids were prepared by hydrothermal reaction of the $\gamma-Al_2O_3$ obtained with dehydration of $\gamma$-AlO(OH) and dilute $CH_3COOH$ solution. In hydrothermal reaction process, reversible reaction was accompanied between $\gamma-Al_2O_3$ and AlO(OH), and hydrothermal reaction temperature, hydrothermal reaction time and $CH_3COOH$ concentration had an effect on the crystal structure, surface chemical property, surface area, pore characteristics and crystal morphology of the AlO(OH) nano colloid particles. In this study, it was investigated to the hydrothermal reaction condition of the AlO(OH) nano colloid for using catalyst support, heat resisting agent, adsorbents, binder, polishing agent and coating agent. The crystal structure, surface area, pore volume and pore size of the platelet AlO(OH) nano colloids were investigated by XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method in liquid nitrogen temperature.

A Study on Synthesis of High Purity $\beta$-SiC Fine Particle from Ethylsilicate(I) -Reaction Conditon, Yeild and Properties of $\beta$-SiC- (Ethyl Silicate를 고순도 $\beta$-SiC미분말 합성에 관한 연구(I) 반응조건과 $\beta$-SiC의 생성율 및 특성)

  • 최용식;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.5
    • /
    • pp.473-478
    • /
    • 1988
  • In order to obtain the high purity $\beta$-SiC powder that possesses the excellent sinterability and is close to the spherical shape, the carbon black was mixed into the composition of Si(OC2H5)4-H2O-NH3-C2H5OH which the monodispersed spherical fine particles is formed the hydrolysis of Ethylsilicate and the mixture was carbonized under an argon atmosphere. Particle shpae, size and the yield of $\beta$-SiC powder were investigated according to the molar ratio of carbon/alkoxide and variations of reaction temperature and reaction time. The results of this study are as follow ; 1) The yield of $\beta$-SiC gained from the reaction for one hour at 150$0^{\circ}C$ almost got near 100% and the particle size of $\beta$-SiC from the reaction for 15 hrs at 150$0^{\circ}C$ was 0.2${\mu}{\textrm}{m}$ on the average and close to the spherical shape agglomerate state. 2) When the molar ratio carbon/alkoxide is over 3.1 and the reaction occurs at 145$0^{\circ}C$ for 5hrs, the carbon content has not an effect on the kind of crystal of product.

  • PDF

Decomposition of Phenol by Electron Beam Accelerator I - Degree of Decomposition of Phenol and Possiblity of Biological Treatment - (전자빔 가속기에 의한 페놀의 분해 I - 페놀의 분해와 생물학적 처리의 가능성 연구 -)

  • Yang, Hae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.3
    • /
    • pp.71-77
    • /
    • 2012
  • This study gives the optimal reaction conditions, reaction mechanisms, reaction rates leaded from the oxidation of phenol by electron beam accelerator and ozone used for recent water treatment. It gives the new possibility of water treatment process to effectively manage industrial sewage containing toxic organic compounds and biological refractory materials. The high decomposition of phenol was observed at the low dose rate, but at this low dose rate, the reaction time was lengthened. So we must find out the optimal dose rate to promote high oxidation of reactants. The reason why the TOC value of aqueous solution wasn't decreased at the low dose was that there were a lot of low molecular organic acids as an intermediates such as formic acid or glyoxalic acid. In order to use both electron beam accelerator and biological treatment for high concentration refractory organic compounds, biological treatment is needed when low molecular organic compounds exist abundantly in sewage. In this experiment, the condition of making a lot of organic acids is from 5 kGy into 20 kGy dose. Decomposition rate of phenol by electron beam accelerator was first order reaction up to 300ppm phenol solution on the basic of TOC value and also showed first order reaction by using both air and ozone as an oxidants.

Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9) (디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘)

  • Park, Geon-Yong;Kim, Jae-Hyoun
    • Textile Coloration and Finishing
    • /
    • v.19 no.4
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.

A Study on the Synthesis of Oxidized Polyethylene Wax by Controlling Reaction Parameters (공정변수를 조절한 폴리에틸렌 산화왁스 합성에 관한 연구)

  • Yang, Chun-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2003
  • Oxidized polyethylene wax is obtained by oxidation of polyethylene wax and it is composed of various chemicals, e.g., fatty acid, alcohol, ketone and ester. The application of oxidized polyethylene wax is determined by the composition of these chemical substances. In this basic study we observed the basic reaction parameters of time, temperature, oxygen concentration and catalysts on the oxidation reaction of low molecular weight polyethylene(PE wax) by analyzing the acid value, physical and chemical properties of oxidized PE wax to develop a new oxidation process. Acid values are increased with temperature increase in the rage of $150^{\circ}C^{\sim}180^{\circ}C$ but decreased beyond 190$^{\circ}C$. Acid values are also increased with oxygen concentration. As the oxidation reaction proceeds the molecular weight and softening points of oxidation products are decreased by cracking reaction, but the viscosities are increased. To observe the crystallinity of oxidation products SEM experiment was performed. To obtain a high acid-value product in a mild condition, we adopted free radical catalysts and the acid value of the product using catalyst was higher than the product obtained without catalyst in the same reaction condition. The effective initiators were dicumyl peroxide(DCPO), t-butylperoxy-2-ethyl hexanoate(HOPO) and benzoyl peroxide(BPO) having long half-life.

Numerical Study on Operating Parameters and Shapes of a Steam Reformer for Hydrogen Production from Methane (천연가스로부터 수소를 생산하기 위한 수증기 개질기의 작동조건과 형상에 대한 수치해석 연구)

  • Park, Joong-Uen;Lee, Shin-Ku;Lim, Sung-Kwang;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.60-68
    • /
    • 2009
  • The steam reformer for hydrogen production from methane is studied by a numerical method. Langmuir- Hinshelwood model is incorporated for catalytic surface reactions, and the pseudo-homogeneous model is used to take into account local equilibrium phenomena between a catalyst and bulk gas. Dominant chemical reactions are Steam Reforming (SR) reaction, Water-Gas Shift (WGS) reaction, and Direct Steam Reforming (DSR) reaction. The numerical results are validated with experimental results at the same operating conditions. Using the validated code, parametric study has been numerically performed in view of the steam reformer performance. As increasing a wall temperature, the fuel conversion increases due to the high heat transfer rate. When Steam to Carbon Ratio (SCR) increases, the concentration of carbon monoxide decreases since WGS reaction becomes more active. When increasing Gas Hourly Space Velocity (GHSV), the fuel conversion decreases due to the heat transfer limitation and the low residence time. The reactor shape effects are also investigated. The length and radius of cylindrical reactors are changed at the same catalyst volume. The longer steam reformer is, the better steam reformer performs. However, system energy efficiency decreases due to the large pressure drop.

Maillard Browning Reaction of D-Psicose as Affected by Reaction Factors

  • Baek, Seung-Hee;Kwon, So-Young;Lee, Hyeon-Gyu;Baek, Hyung-Hee
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1349-1351
    • /
    • 2008
  • This study examined the effects of temperature, D-psicose concentration, pH, and various amino acids on the Maillard browning reaction of D-psicose and glycine mixture and compared browning color intensity with those of other sugars, such as sucrose, D-glucose, D-fructose, and D-tagatose. When D-psicose (0.1 M) and glycine (0.1 M) mixture was heated at $70-100^{\circ}C$ for 5 hr, the absorbance at 420 nm increased with increasing reaction temperature and time. The Hunter a, b values, and color difference (${\Delta}E$) increased with increasing D-psicose concentration and pH within the range of pH 3-7 except at pH 6, while the L value decreased. The rate of Maillard browning reaction was in order of D-tagatose>D-psicose $\fallingdotseq$ D-fructose>D-glucose>sucrose. The browning color intensity of the D-psicose-basic and non-polar amino acids mixtures was higher than that of the D-psicose-acidic amino acids.